You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/layer.py

327 lines
11 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defines
the way how to configure a neural network topology in Paddle Python code.
The primary usage shows below.
.. code-block:: python
import paddle.v2 as paddle
img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
hidden = paddle.layer.fc(input=img, size=200)
prediction = paddle.layer.fc(input=hidden, size=10,
act=paddle.activation.Softmax())
# use prediction instance where needed.
parameters = paddle.parameters.create(cost)
"""
import collections
import copy
import re
import paddle.trainer_config_helpers.layers as v1_layers
import paddle.trainer.config_parser as cp
from paddle.proto.ModelConfig_pb2 import ModelConfig, SubModelConfig
from config_base import __convert_to_v2__
import config_base
__all__ = ['data', 'parse_network']
def __need_to_keep__(name):
return name in [
'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType',
'layer_support', 'BaseGeneratedInput'
]
def __need_to_wrap__(name):
return name not in ['AggregateLevel', 'ExpandLevel', 'BaseGeneratedInput']
def __convert_name__(inname):
if __need_to_keep__(inname):
return inname
if inname == 'maxid_layer':
return 'max_id'
elif inname.endswith('memory') or inname.endswith(
'_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
return inname
elif inname in [
'cross_entropy', 'multi_binary_label_cross_entropy',
'cross_entropy_with_selfnorm'
]:
return inname + "_cost"
elif inname.endswith('_cost'):
return inname
elif inname.endswith("_layer"):
return inname[:-len("_layer")]
else:
return inname
for name in v1_layers.__all__:
obj = getattr(v1_layers, name)
new_name = __convert_name__(name)
if callable(obj) and __need_to_wrap__(name):
globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
else:
globals()[new_name] = obj
__all__.append(new_name)
def __data_layer__(name, type, **kwargs):
l = v1_layers.data_layer(name, type.dim, **kwargs)
l.data_type = type
return l
def __map_data_docstr__(doc):
doc = re.sub(r'(data = [^\)]+)\).*',
"data = paddle.layer.data(name=\"input\", "
"type=paddle.data_type.dense_vector(1000))", doc)
doc = re.sub(r':param size:.*', ':param type: Data type of this data layer',
doc)
doc = re.sub(r':type size:.*', ":type size: paddle.v2.data_type.InputType",
doc)
return doc
__data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
data = __convert_to_v2__(__data_layer__, 'name', __name__)
def __get_used_layers__(output_layers):
layer_names = set()
parents = {}
def add_parent(child, parent):
if child in parents:
parents[child].append(parent)
else:
parents[child] = [parent]
def add_additional_parents():
for sub_model in cp.g_config.model_config.sub_models:
if sub_model.name == 'root':
continue
for link in sub_model.in_links:
add_parent(link.link_name, link.layer_name)
add_parent(sub_model.name, link.layer_name)
for link in sub_model.out_links:
add_parent(link.link_name, link.layer_name)
add_parent(link.link_name, sub_model.name)
for mem in sub_model.memories:
if mem.boot_layer_name:
add_parent(mem.layer_name, mem.boot_layer_name)
add_parent(mem.link_name, mem.layer_name)
if sub_model.HasField('generator'):
# according to the implementation of text generation
# in recurrent layer group, the generated word must be
# the first out link
add_parent(sub_model.out_links[0].layer_name,
sub_model.generator.eos_layer_name)
def dfs_travel(layer_name):
if layer_name in layer_names:
return
layer_names.add(layer_name)
layer = cp.g_layer_map[layer_name]
for inp in layer.inputs:
dfs_travel(inp.input_layer_name)
if layer.name in parents:
for p in parents[layer.name]:
dfs_travel(p)
add_additional_parents()
for layer in output_layers:
dfs_travel(layer.full_name)
# print layer needs to be specially handled because no other
# layer depends on it. It is used to print the result of some
# layers when running the model for debug purpose. So we explicitly
# add a print layer to the topolty if its input is in the toplogy.
for layer in cp.g_config.model_config.layers:
if layer.type == 'print':
used = True
for inp in layer.inputs:
if inp.input_layer_name not in layer_names:
used = False
break
if used:
layer_names.add(layer.name)
return layer_names
def __get_used_parameters__(layer_names, sub_models):
parameter_names = set()
for name in layer_names:
l = cp.g_layer_map[name]
for inp in l.inputs:
if inp.input_parameter_name:
parameter_names.add(inp.input_parameter_name)
if l.bias_parameter_name:
parameter_names.add(l.bias_parameter_name)
for sub_model in sub_models:
for mem in sub_model.memories:
if mem.HasField("boot_bias_parameter_name"):
parameter_names.add(mem.boot_bias_parameter_name)
return parameter_names
def __get_used_submodels__(layer_names):
submodel_names = set()
for submodel in cp.g_config.model_config.sub_models:
if submodel.name in layer_names:
submodel_names.add(submodel.name)
return submodel_names
def __get_submodel_data_out_links__():
data_links = set()
for submodel in cp.g_config.model_config.sub_models:
for link in submodel.out_links:
if cp.g_layer_map[link.link_name].type == 'data':
data_links.add(link.link_name)
return data_links
def __get_used_evaluators__(layer_names):
evaluator_names = set()
for e in cp.g_config.model_config.evaluators:
used = True
for name in e.input_layers:
if name not in layer_names:
used = False
break
if used:
evaluator_names.add(e.name)
return evaluator_names
def __trim_submodel__(old_submodel, layer_names, input_layer_names,
output_layer_names, evaluator_names):
submodel = SubModelConfig()
submodel.name = old_submodel.name
submodel.layer_names.extend(
filter(lambda x: x in layer_names, old_submodel.layer_names))
submodel.input_layer_names.extend(
filter(lambda x: x in input_layer_names, submodel.layer_names))
submodel.output_layer_names.extend(
filter(lambda x: x in output_layer_names, submodel.layer_names))
submodel.evaluator_names.extend(
filter(lambda x: x in evaluator_names, old_submodel.evaluator_names))
submodel.is_recurrent_layer_group = old_submodel.is_recurrent_layer_group
submodel.reversed = old_submodel.reversed
submodel.memories.extend(
filter(lambda x: x.link_name in layer_names, old_submodel.memories))
target_inlinkid = (old_submodel.target_inlinkid
if old_submodel.HasField('target_inlinkid') else -1)
in_links = []
for i, link in enumerate(old_submodel.in_links):
if link.link_name in layer_names or i == target_inlinkid:
in_links.append(link)
if i == target_inlinkid:
target_inlinkid = len(in_links) - 1
submodel.in_links.extend(in_links)
submodel.out_links.extend(
filter(lambda x: x.link_name in layer_names, old_submodel.out_links))
if old_submodel.HasField('generator'):
submodel.generator.CopyFrom(old_submodel.generator)
if old_submodel.HasField('target_inlinkid'):
submodel.target_inlinkid = target_inlinkid
return submodel
def parse_network(output_layers, extra_layers=None):
if not isinstance(output_layers, collections.Sequence):
output_layers = [output_layers]
if extra_layers is not None:
if not isinstance(extra_layers, collections.Sequence):
extra_layers = [extra_layers]
else:
extra_layers = []
layer_names = __get_used_layers__(list(output_layers) + list(extra_layers))
submodel_names = __get_used_submodels__(layer_names)
submodel_names.add('root')
evaluator_names = __get_used_evaluators__(layer_names)
data_out_links = __get_submodel_data_out_links__()
input_layer_names = set()
output_layer_names = set()
model_config = ModelConfig()
model_config.type = cp.g_config.model_config.type
for layer in output_layers:
model_config.output_layer_names.append(layer.full_name)
output_layer_names.add(layer.full_name)
for l in cp.g_config.model_config.layers:
if l.name not in layer_names:
continue
model_config.layers.extend([l])
if l.type == 'data':
if l.name in data_out_links:
"""
In text generation, the outlink to save the generated word
indices is a data_layer defined in recurrent_group. This
data_layer is sure to be the output of the network in text
generation task, so this statement excludes such a special
data_layer from being inputs of the network, otherwise an error
will occur during data feeding.
"""
continue
model_config.input_layer_names.append(l.name)
input_layer_names.add(l.name)
for e in cp.g_config.model_config.evaluators:
if e.name in evaluator_names:
model_config.evaluators.extend([e])
for s in cp.g_config.model_config.sub_models:
if s.name in submodel_names:
s = __trim_submodel__(s, layer_names, input_layer_names,
output_layer_names, evaluator_names)
model_config.sub_models.extend([s])
parameter_names = __get_used_parameters__(layer_names,
model_config.sub_models)
for p in cp.g_config.model_config.parameters:
if p.name in parameter_names:
model_config.parameters.extend([p])
return model_config
def get_layer(name):
return config_base.__layer_map__.get(name)