You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/topology.py

146 lines
5.1 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from paddle.proto.ModelConfig_pb2 import ModelConfig
import paddle.trainer_config_helpers as conf_helps
import layer as v2_layer
import config_base
import cPickle
from paddle.trainer import config_parser as cp
__all__ = ['Topology']
class Topology(object):
"""
Topology is used to store the information about all layers
and network configs.
"""
def __init__(self, layers, extra_layers=None):
def __check__(layers):
if not isinstance(layers, collections.Sequence):
layers = [layers]
for layer in layers:
__check_layer_type__(layer)
return layers
layers = __check__(layers)
self.layers = layers
if extra_layers is not None:
extra_layers = __check__(extra_layers)
self.__model_config__ = v2_layer.parse_network(
layers, extra_layers=extra_layers)
if extra_layers is not None:
self.layers.extend(extra_layers)
assert isinstance(self.__model_config__, ModelConfig)
def update_from_default(self):
# HACK(typhoonzero): update ParameterConfig(proto) in case of
# optimizers are defined after layers, or between layers.
# Must be called from trainer.__init__()
for parameter in self.__model_config__.parameters:
if parameter.momentum == 0.0 and cp.g_default_momentum:
parameter.momentum = cp.g_default_momentum
if parameter.decay_rate == 0.0 and cp.g_default_decay_rate:
parameter.decay_rate = cp.g_default_decay_rate
if parameter.initial_mean == 0.0:
parameter.initial_mean = cp.g_default_initial_mean
if parameter.initial_std == 0.01:
parameter.initial_std = cp.g_default_initial_std
if parameter.initial_strategy == 0:
parameter.initial_strategy = cp.g_default_initial_strategy
if parameter.initial_smart == False:
parameter.initial_smart = cp.g_default_initial_smart
if parameter.num_batches_regularization == 1 and \
cp.g_default_num_batches_regularization:
parameter.num_batches_regularization = \
cp.g_default_num_batches_regularization
if parameter.gradient_clipping_threshold == 0.0 and \
cp.g_default_gradient_clipping_threshold:
parameter.gradient_clipping_threshold = \
cp.g_default_gradient_clipping_threshold
if parameter.device == -1 and cp.g_default_device:
parameter.device = cp.g_default_device
# FIXME(typhoonzero): ignored: update_hooks, g_default_compact_func
def use_sparse_updater(self):
"""
check if any parameter require to use sparse_update
:return:
"""
use_sparse = False
for parameter in self.__model_config__.parameters:
if parameter.sparse_update or parameter.sparse_remote_update:
use_sparse = True
break
return use_sparse
def proto(self):
return self.__model_config__
def get_layer(self, name):
"""
get v2.Layer Class instance by layer name
:param name:
:return:
"""
return v2_layer.get_layer(name)
def data_layers(self):
"""
get all data layer
:return:
"""
data_layers = {}
for layer in self.proto().layers:
l = v2_layer.get_layer(layer.name)
if l and l.layer_type == conf_helps.LayerType.DATA:
data_layers[layer.name] = l
return data_layers
def data_type(self):
"""
get data_type from proto, such as:
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
data_layers = self.data_layers()
return [(nm, data_layers[nm].data_type)
for nm in self.proto().input_layer_names]
def get_layer_proto(self, name):
for layer in self.__model_config__.layers:
if layer.name == name:
return layer
return None
def serialize_for_inference(self, stream):
protobin = self.proto().SerializeToString()
data_type = self.data_type()
cPickle.dump({
'protobin': protobin,
'data_type': data_type
}, stream, cPickle.HIGHEST_PROTOCOL)
def __check_layer_type__(layer):
if not isinstance(layer, config_base.Layer):
raise ValueError('layer should have type paddle.v2.config_base.Layer')