You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
6.1 KiB
145 lines
6.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from .optimizer import Optimizer
|
|
from ..fluid import core
|
|
from ..fluid import framework
|
|
from ..fluid.framework import Variable, name_scope
|
|
|
|
__all__ = ["Adadelta"]
|
|
|
|
|
|
class Adadelta(Optimizer):
|
|
"""
|
|
**Notes: This API does not support sparse parameter optimization.**
|
|
|
|
Adadelta Optimizer. Please refer to this for details:
|
|
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.
|
|
|
|
The update is done as follows:
|
|
|
|
.. math::
|
|
|
|
E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
|
|
|
|
learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
|
|
|
|
E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
|
|
|
|
Args:
|
|
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
|
|
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
|
|
epsilon (float): a small float number for numeric stability. Default 1.0e-6.
|
|
rho (float): a floating point value indicating the decay rate. Default 0.95.
|
|
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
|
|
This parameter is required in dygraph mode. \
|
|
The default value is None in static mode, at this time all parameters will be updated.
|
|
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
|
|
It canbe a float value as coeff of L2 regularization or \
|
|
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
|
|
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
|
|
the regularization setting here in optimizer will be ignored for this parameter. \
|
|
Otherwise, the regularization setting here in optimizer will take effect. \
|
|
Default None, meaning there is no regularization.
|
|
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
|
|
some derived class of ``GradientClipBase`` . There are three cliping strategies
|
|
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
|
|
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
|
|
name (str, optional): The default value is None. Normally there is no need for user
|
|
to set this property. For more information, please refer to
|
|
:ref:`api_guide_Name` .
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
import paddle
|
|
import numpy as np
|
|
paddle.disable_static()
|
|
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
|
|
linear = paddle.nn.Linear(10, 10)
|
|
inp = paddle.to_tensor(inp)
|
|
out = linear(inp)
|
|
loss = paddle.mean(out)
|
|
beta1 = paddle.to_tensor([0.9], dtype="float32")
|
|
beta2 = paddle.to_tensor([0.99], dtype="float32")
|
|
adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
|
|
back = out.backward()
|
|
adadelta.step()
|
|
adadelta.clear_grad()
|
|
|
|
"""
|
|
|
|
_avg_squared_grad_acc_str = "_avg_squared_grad"
|
|
_avg_squared_update_acc_str = "_avg_squared_update"
|
|
|
|
def __init__(self,
|
|
learning_rate=0.001,
|
|
epsilon=1.0e-6,
|
|
rho=0.95,
|
|
parameters=None,
|
|
weight_decay=None,
|
|
grad_clip=None,
|
|
name=None):
|
|
if learning_rate is None:
|
|
raise ValueError("learning_rate is not set.")
|
|
if epsilon is None:
|
|
raise ValueError("epsilon is not set.")
|
|
if rho is None:
|
|
raise ValueError("rho is not set.")
|
|
super(Adadelta, self).__init__(
|
|
learning_rate=learning_rate,
|
|
parameters=parameters,
|
|
weight_decay=weight_decay,
|
|
grad_clip=grad_clip,
|
|
name=name)
|
|
self.type = "adadelta"
|
|
self._epsilon = epsilon
|
|
self._rho = rho
|
|
|
|
def _create_accumulators(self, block, parameters):
|
|
if not isinstance(block, framework.Block):
|
|
raise TypeError("block is not instance of framework.Block.")
|
|
|
|
for p in parameters:
|
|
self._add_accumulator(self._avg_squared_grad_acc_str, p)
|
|
self._add_accumulator(self._avg_squared_update_acc_str, p)
|
|
|
|
def _append_optimize_op(self, block, param_and_grad):
|
|
if not isinstance(block, framework.Block):
|
|
raise TypeError("block is not instance of framework.Block.")
|
|
|
|
avg_squared_grad_acc = self._get_accumulator(
|
|
self._avg_squared_grad_acc_str, param_and_grad[0])
|
|
avg_squared_update_acc = self._get_accumulator(
|
|
self._avg_squared_update_acc_str, param_and_grad[0])
|
|
|
|
# Create the adadelta optimizer op
|
|
adadelta_op = block.append_op(
|
|
type=self.type,
|
|
inputs={
|
|
"Param": param_and_grad[0],
|
|
"Grad": param_and_grad[1],
|
|
"AvgSquaredGrad": avg_squared_grad_acc,
|
|
"AvgSquaredUpdate": avg_squared_update_acc
|
|
},
|
|
outputs={
|
|
"ParamOut": param_and_grad[0],
|
|
"AvgSquaredGradOut": avg_squared_grad_acc,
|
|
"AvgSquaredUpdateOut": avg_squared_update_acc
|
|
},
|
|
attrs={"epsilon": self._epsilon,
|
|
"rho": self._rho},
|
|
stop_gradient=True)
|
|
|
|
return adadelta_op
|