You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.1 KiB
97 lines
3.1 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
######################## data source ################################
|
|
define_py_data_sources2(
|
|
train_list='gserver/tests/Sequence/dummy.list',
|
|
test_list=None,
|
|
module='rnn_data_provider',
|
|
obj='process_unequalength_subseq')
|
|
|
|
settings(batch_size=2, learning_rate=0.01)
|
|
######################## network configure ################################
|
|
dict_dim = 10
|
|
word_dim = 8
|
|
hidden_dim = 8
|
|
label_dim = 2
|
|
|
|
speaker1 = data_layer(name="word1", size=dict_dim)
|
|
speaker2 = data_layer(name="word2", size=dict_dim)
|
|
|
|
emb1 = embedding_layer(input=speaker1, size=word_dim)
|
|
emb2 = embedding_layer(input=speaker2, size=word_dim)
|
|
|
|
|
|
# This hierarchical RNN is designed to be equivalent to the simple RNN in
|
|
# sequence_rnn_multi_unequalength_inputs.conf
|
|
def outer_step(x1, x2):
|
|
index = [0]
|
|
|
|
def inner_step(ipt):
|
|
index[0] += 1
|
|
i = index[0]
|
|
outer_mem = memory(name="outer_rnn_state_%d" % i, size=hidden_dim)
|
|
|
|
def inner_step_impl(y):
|
|
inner_mem = memory(
|
|
name="inner_rnn_state_" + y.name,
|
|
size=hidden_dim,
|
|
boot_layer=outer_mem)
|
|
out = fc_layer(
|
|
input=[y, inner_mem],
|
|
size=hidden_dim,
|
|
act=TanhActivation(),
|
|
bias_attr=True,
|
|
name='inner_rnn_state_' + y.name)
|
|
return out
|
|
|
|
encoder = recurrent_group(
|
|
step=inner_step_impl, name='inner_%d' % i, input=ipt)
|
|
last = last_seq(name="outer_rnn_state_%d" % i, input=encoder)
|
|
return encoder, last
|
|
|
|
encoder1, sentence_last_state1 = inner_step(ipt=x1)
|
|
encoder2, sentence_last_state2 = inner_step(ipt=x2)
|
|
|
|
encoder1_expand = expand_layer(
|
|
input=sentence_last_state1, expand_as=encoder2)
|
|
|
|
return [encoder1_expand, encoder2]
|
|
|
|
|
|
encoder1_rep, encoder2_rep = recurrent_group(
|
|
name="outer",
|
|
step=outer_step,
|
|
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
|
|
targetInlink=emb2)
|
|
|
|
encoder1_last = last_seq(input=encoder1_rep)
|
|
encoder1_expandlast = expand_layer(input=encoder1_last, expand_as=encoder2_rep)
|
|
context = mixed_layer(
|
|
input=[
|
|
identity_projection(encoder1_expandlast),
|
|
identity_projection(encoder2_rep)
|
|
],
|
|
size=hidden_dim)
|
|
|
|
rep = last_seq(input=context)
|
|
prob = fc_layer(
|
|
size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
|
|
|
|
outputs(
|
|
classification_cost(
|
|
input=prob, label=data_layer(
|
|
name="label", size=label_dim)))
|