You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
919 lines
34 KiB
919 lines
34 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/backward.h"
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/framework/block_desc.h"
|
|
#include "paddle/framework/op_desc.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/var_desc.h"
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
USE_NO_KERNEL_OP(fill_constant);
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
using DeviceContext = platform::DeviceContext;
|
|
|
|
class NoneOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext *ctx) const override {}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class NoneKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {}
|
|
};
|
|
|
|
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "Input X of Add");
|
|
AddInput("b", "Bias of Add");
|
|
AddOutput("Out", "Out of Add");
|
|
AddComment("Add Op");
|
|
}
|
|
};
|
|
|
|
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
|
|
public:
|
|
using SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<OpDesc> Apply() const override {
|
|
auto grad_op = new OpDesc();
|
|
grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
|
|
grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
|
|
grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
|
|
grad_op->SetType("rowwise_add_grad");
|
|
return std::unique_ptr<OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
class MulOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "A");
|
|
AddInput("Y", "B");
|
|
AddOutput("Out", "Out");
|
|
AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
|
|
AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
|
|
AddComment("Mul");
|
|
}
|
|
};
|
|
|
|
class SigmoidOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "X");
|
|
AddOutput("Out", "Y");
|
|
AddComment("Sigmoid");
|
|
}
|
|
};
|
|
|
|
class NoGradOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "X input");
|
|
AddOutput("Out", "Y output");
|
|
AddComment("NoGradOp, same input output. no Grad");
|
|
}
|
|
};
|
|
|
|
class FcOp : public operators::NetOp {
|
|
public:
|
|
FcOp(const std::string &type, const VariableNameMap &inputs,
|
|
const VariableNameMap &outputs, const AttributeMap &attrs)
|
|
: NetOp(type, inputs, outputs, attrs) {
|
|
AppendOp(OpRegistry::CreateOp(
|
|
"mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}},
|
|
{{"Out", {Output("mul_result")}}}, AttributeMap{}));
|
|
auto input_b = Inputs("b");
|
|
std::string before_act = "mul_result";
|
|
if (input_b.size() != 0) {
|
|
AppendOp(OpRegistry::CreateOp(
|
|
"rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
|
|
{{"Out", {Output("add_result")}}}, AttributeMap{}));
|
|
before_act = "add_result";
|
|
} else {
|
|
auto out_varname = Output("add_result");
|
|
if (out_varname != kEmptyVarName) {
|
|
this->Rename(out_varname, kEmptyVarName);
|
|
}
|
|
}
|
|
|
|
AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
|
|
{{"Out", {Output("Out")}}}, AttributeMap{}));
|
|
CompleteAddOp(false);
|
|
}
|
|
};
|
|
|
|
class FcOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "x");
|
|
AddInput("W", "w");
|
|
AddInput("b", "b");
|
|
AddOutput("mul_result", "").AsIntermediate();
|
|
AddOutput("add_result", "").AsIntermediate();
|
|
AddOutput("Out", "");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("x", "x");
|
|
AddOutput("y", "y");
|
|
AddOutput("z", "z");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class FillZeroOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "x");
|
|
AddOutput("Out", "out");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SumOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
|
|
AddOutput("Out", "the output tensor of sum operator.");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "x");
|
|
AddInput("H", "h");
|
|
AddOutput("Y", "y");
|
|
AddOutput("Z", "z");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class MinusGradOpDescMaker : public GradOpDescMakerBase {
|
|
public:
|
|
using GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
std::vector<std::unique_ptr<OpDesc>> operator()() const override {
|
|
std::vector<std::unique_ptr<OpDesc>> retv;
|
|
auto x_g = InputGrad("X");
|
|
if (!x_g.empty()) {
|
|
auto *op_desc = new OpDesc();
|
|
op_desc->SetType("scale");
|
|
op_desc->SetInput("X", OutputGrad("Out"));
|
|
op_desc->SetOutput("Out", x_g);
|
|
op_desc->SetAttr("scale", 1.0f);
|
|
retv.emplace_back(op_desc);
|
|
}
|
|
|
|
auto y_g = InputGrad("Y");
|
|
if (!y_g.empty()) {
|
|
auto *op_desc = new OpDesc();
|
|
op_desc->SetType("scale");
|
|
op_desc->SetInput("X", OutputGrad("Out"));
|
|
op_desc->SetOutput("Out", y_g);
|
|
op_desc->SetAttr("scale", -1.0f);
|
|
retv.emplace_back(op_desc);
|
|
}
|
|
return retv;
|
|
}
|
|
};
|
|
|
|
class MinusOpMaker : public OpProtoAndCheckerMaker {
|
|
public:
|
|
MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "");
|
|
AddInput("Y", "");
|
|
AddOutput("Out", "");
|
|
AddComment("minus for unittest");
|
|
}
|
|
};
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
namespace f = paddle::framework;
|
|
namespace ops = paddle::operators;
|
|
using EnforceNotMet = paddle::platform::EnforceNotMet;
|
|
// rowwise_add
|
|
REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker,
|
|
f::RowWiseAddGradMaker);
|
|
REGISTER_OP_CPU_KERNEL(rowwise_add,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(rowwise_add_grad,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// mul
|
|
REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(mul_grad,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// sigmoid
|
|
REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(sigmoid,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker);
|
|
// fill_zeros_like
|
|
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(fill_zeros_like,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// sum
|
|
REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(sum_grad,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// fc
|
|
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
|
|
// many_output_op
|
|
REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker,
|
|
many_output_op_grad, f::NoneOp);
|
|
// mult_in_out
|
|
REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad,
|
|
f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(mult_in_out,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(mult_in_out_grad,
|
|
f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// minus
|
|
REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker);
|
|
REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
// scale
|
|
REGISTER_OPERATOR(scale, f::NoneOp);
|
|
REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel<paddle::platform::CPUPlace, float>);
|
|
|
|
TEST(Backward, simple_op_not_need_grad) {
|
|
auto fwd =
|
|
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
|
|
{{"Out", {"out"}}}, f::AttributeMap{});
|
|
ASSERT_NE(fwd, nullptr);
|
|
auto gop = f::Backward(*fwd, {"x"});
|
|
ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);
|
|
|
|
auto no_input_gop = f::Backward(*fwd, {"x", "b"});
|
|
ASSERT_NE(no_input_gop, nullptr);
|
|
ASSERT_TRUE(no_input_gop->IsNetOp());
|
|
ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
|
|
}
|
|
|
|
TEST(Backward, net_fc_backward_normal) {
|
|
std::shared_ptr<f::OperatorBase> fwd =
|
|
f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
|
|
{{"mul_result", {"mul_res"}},
|
|
{"add_result", {"add_re"}},
|
|
{"Out", {"out"}}},
|
|
f::AttributeMap{});
|
|
ASSERT_NE(fwd, nullptr);
|
|
std::shared_ptr<f::OperatorBase> gop =
|
|
f::Backward(*fwd, std::unordered_set<std::string>{});
|
|
ASSERT_TRUE(gop->IsNetOp());
|
|
auto net = static_cast<ops::NetOp *>(gop.get());
|
|
|
|
ASSERT_NO_THROW(net->DebugString());
|
|
|
|
ASSERT_EQ(3UL, net->ops_.size());
|
|
|
|
f::OperatorBase &d_sigmoid = *net->ops_[0];
|
|
ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
|
|
|
|
f::OperatorBase &d_add = *net->ops_[1];
|
|
ASSERT_EQ("rowwise_add_grad", d_add.Type());
|
|
|
|
f::OperatorBase &d_mul = *net->ops_[2];
|
|
ASSERT_EQ("mul_grad", d_mul.Type());
|
|
}
|
|
|
|
TEST(Backward, net_fc_backward_not_have_b) {
|
|
std::shared_ptr<f::OperatorBase> fwd =
|
|
f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
|
|
{{"mul_result", {"mul_res"}},
|
|
{"add_result", {"add_res"}},
|
|
{"Out", {"tmp"}}},
|
|
f::AttributeMap{});
|
|
ASSERT_NE(fwd, nullptr);
|
|
std::shared_ptr<f::OperatorBase> gop =
|
|
f::Backward(*fwd, std::unordered_set<std::string>{});
|
|
ASSERT_TRUE(gop->IsNetOp());
|
|
auto net = static_cast<ops::NetOp *>(gop.get());
|
|
|
|
ASSERT_NO_THROW(net->DebugString());
|
|
|
|
ASSERT_EQ(2UL, net->ops_.size());
|
|
|
|
f::OperatorBase &d_sigmoid = *net->ops_[0];
|
|
ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
|
|
|
|
f::OperatorBase &d_mul = *net->ops_[1];
|
|
ASSERT_EQ("mul_grad", d_mul.Type());
|
|
}
|
|
|
|
TEST(Backward, net_input_of_network_not_need_grad) {
|
|
ops::NetOp net;
|
|
net.AppendOp(f::OpRegistry::CreateOp(
|
|
"fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
|
|
{{"mul_result", {"mul_tmp_0"}},
|
|
{"add_result", {"add_tmp_0"}},
|
|
{"Out", {"hidden0"}}},
|
|
f::AttributeMap{}));
|
|
net.AppendOp(f::OpRegistry::CreateOp(
|
|
"fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
|
|
{{"mul_result", {"mul_tmp_1"}},
|
|
{"add_result", {"add_tmp_1"}},
|
|
{"Out", {"hidden1"}}},
|
|
f::AttributeMap{}));
|
|
net.CompleteAddOp();
|
|
auto bwd = Backward(net, {"x"}); // x@GRAD is not need.
|
|
ASSERT_TRUE(bwd->IsNetOp());
|
|
auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
|
|
|
|
auto output_vars = bwd_net->OutputVars(true);
|
|
std::unordered_set<std::string> all_outputs =
|
|
std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
|
|
all_outputs.erase(f::kEmptyVarName);
|
|
|
|
for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
|
|
ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
|
|
}
|
|
|
|
// Not Generated X
|
|
ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());
|
|
|
|
ASSERT_EQ(2UL, bwd_net->ops_.size());
|
|
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
|
|
auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
|
|
ASSERT_EQ(3UL, first_fc_grad->ops_.size());
|
|
ASSERT_EQ(f::kEmptyVarName,
|
|
first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
|
|
}
|
|
|
|
TEST(Backward, net_shared_weight) {
|
|
ops::NetOp net;
|
|
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
|
|
{{"Out", {"out"}}}, f::AttributeMap{}));
|
|
net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
|
|
{{"Out", {"FinalOut"}}},
|
|
f::AttributeMap{}));
|
|
net.CompleteAddOp();
|
|
|
|
auto bwd = f::Backward(net, std::unordered_set<std::string>{});
|
|
ASSERT_TRUE(bwd->IsNetOp());
|
|
auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
|
|
ASSERT_EQ(3UL, bwd_net->ops_.size());
|
|
ASSERT_EQ("sum", bwd_net->ops_[2]->Type());
|
|
}
|
|
|
|
TEST(Backward, op_all_input_are_not_need) {
|
|
auto fwd =
|
|
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
|
|
{{"Out", {"out"}}}, f::AttributeMap{});
|
|
auto backward = f::Backward(*fwd, {"x", "b"});
|
|
ASSERT_TRUE(backward->IsNetOp());
|
|
auto net = static_cast<ops::NetOp *>(backward.get());
|
|
ASSERT_TRUE(net->ops_.empty());
|
|
}
|
|
|
|
TEST(Backward, op_all_output_are_not_need) {
|
|
auto fwd =
|
|
f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}},
|
|
{{"Out", {"out"}}}, f::AttributeMap{});
|
|
auto backward = f::Backward(*fwd, {"out"});
|
|
ASSERT_TRUE(backward->IsNetOp());
|
|
auto net = static_cast<ops::NetOp *>(backward.get());
|
|
ASSERT_TRUE(net->ops_.empty());
|
|
}
|
|
|
|
TEST(Backward, op_part_of_output_are_not_need) {
|
|
auto fwd =
|
|
f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
|
|
{{"y", {"Y"}}, {"z", {"Z"}}}, f::AttributeMap{});
|
|
auto backward = f::Backward(*fwd, {"Z"});
|
|
ASSERT_TRUE(backward->IsNetOp());
|
|
auto net = static_cast<ops::NetOp *>(backward.get());
|
|
ASSERT_EQ(net->ops_.size(), 2UL);
|
|
|
|
auto &fill_zero = *net->ops_[0];
|
|
ASSERT_EQ("fill_zeros_like", fill_zero.Type());
|
|
ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
|
|
ASSERT_EQ("Z", fill_zero.Input("X"));
|
|
ASSERT_EQ(1UL, fill_zero.Outputs("Out").size());
|
|
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Out"));
|
|
|
|
auto &d_many_out = *net->ops_[1];
|
|
ASSERT_EQ("many_output_op_grad", d_many_out.Type());
|
|
ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size()); // I/O/OG
|
|
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
|
|
d_many_out.Input(f::GradVarName("z")));
|
|
ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
|
|
ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
|
|
}
|
|
|
|
TEST(Backward, op_part_of_input_are_not_need) {
|
|
auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
|
|
{{"Out", {"out"}}}, f::AttributeMap{});
|
|
auto backward = f::Backward(*fwd, {"a"});
|
|
auto &grad_mul = *backward;
|
|
ASSERT_EQ(grad_mul.Type(), "mul_grad");
|
|
ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
|
|
ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
|
|
ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
|
|
ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
|
|
ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
|
|
ASSERT_EQ(grad_mul.Input("X"), "a");
|
|
ASSERT_EQ(grad_mul.Input("Y"), "b");
|
|
ASSERT_EQ(grad_mul.Input("Out"), "out");
|
|
}
|
|
|
|
TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
|
|
ops::NetOp net;
|
|
net.AppendOp(f::OpRegistry::CreateOp(
|
|
"fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
|
|
{{"mul_result", {"mul_out1"}},
|
|
{"add_result", {"add_out1"}},
|
|
{"Out", {"out1"}}},
|
|
f::AttributeMap{}));
|
|
net.AppendOp(f::OpRegistry::CreateOp(
|
|
"fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
|
|
{{"mul_result", {"mul_out2"}},
|
|
{"add_result", {"tmp_out2"}},
|
|
{"Out", {"out2"}}},
|
|
f::AttributeMap{}));
|
|
net.AppendOp(f::OpRegistry::CreateOp(
|
|
"fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
|
|
{{"mul_result", {"mul_out3"}},
|
|
{"add_result", {"tmp_out3"}},
|
|
{"Out", {"out3"}}},
|
|
f::AttributeMap{}));
|
|
net.CompleteAddOp();
|
|
|
|
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
|
|
ASSERT_TRUE(backward->IsNetOp());
|
|
auto bwd_net = static_cast<ops::NetOp *>(backward.get());
|
|
ASSERT_EQ(bwd_net->ops_.size(), 3UL);
|
|
auto &grad_fc = *bwd_net->ops_[0];
|
|
|
|
const char *all = paddle::operators::NetOp::kAll;
|
|
EXPECT_EQ(grad_fc.Inputs(all).size(),
|
|
2UL /* external input number */
|
|
+ 1UL /* external output number*/
|
|
+ 1UL /* number of gradient of external output*/
|
|
+ 2UL /* internal variable number*/
|
|
);
|
|
EXPECT_EQ(grad_fc.Outputs(all).size(),
|
|
2UL /* input number of mul*/
|
|
+ 2UL /* input number of rowwise_add*/
|
|
+ 1UL /* input number of sigmod */
|
|
- 1UL /* out2 is not needed*/);
|
|
EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
|
|
EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
|
|
EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
|
|
EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
|
|
}
|
|
|
|
TEST(Backward, simple_single_op) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
|
|
f::OpDesc *op = block->AppendOp();
|
|
op->SetType("rowwise_add");
|
|
op->SetInput("X", {"x"});
|
|
op->SetInput("b", {"b"});
|
|
op->SetOutput("Out", {"out"});
|
|
|
|
auto target = f::VarDesc("out");
|
|
target.SetShape({1});
|
|
auto var_to_grad =
|
|
AppendBackward(program, target, std::unordered_set<std::string>{});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 3UL);
|
|
f::OpDesc *fill_op = block->AllOps()[1];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op = block->AllOps()[2];
|
|
EXPECT_EQ(grad_op->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out")}));
|
|
EXPECT_EQ(grad_op->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("x")}));
|
|
EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b")}));
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 3UL);
|
|
EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2));
|
|
EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2));
|
|
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("x")));
|
|
}
|
|
|
|
TEST(Backward, default_attribute) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
f::OpDesc *op = block->AppendOp();
|
|
op->SetType("mul");
|
|
op->SetInput("X", {"x"});
|
|
op->SetInput("Y", {"y"});
|
|
op->SetOutput("Out", {"out"});
|
|
op->CheckAttrs();
|
|
|
|
auto target = f::VarDesc("out");
|
|
target.SetShape({1});
|
|
AppendBackward(program, target, std::unordered_set<std::string>{});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 3UL);
|
|
EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
|
|
EXPECT_EQ(boost::get<int>(op->GetAttr("y_num_col_dims")), 1);
|
|
|
|
f::OpDesc *fill_op = block->AllOps()[1];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op = block->AllOps()[2];
|
|
ASSERT_EQ(grad_op->Type(), "mul_grad");
|
|
EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
|
|
EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
|
|
}
|
|
|
|
TEST(Backward, simple_mult_op) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
f::OpDesc *op1 = block->AppendOp();
|
|
op1->SetType("rowwise_add");
|
|
op1->SetInput("X", {"x1"});
|
|
op1->SetInput("b", {"b1"});
|
|
op1->SetOutput("Out", {"out1"});
|
|
|
|
f::OpDesc *op2 = block->AppendOp();
|
|
op2->SetType("mul");
|
|
op2->SetInput("X", {"out1"});
|
|
op2->SetInput("Y", {"y2"});
|
|
op2->SetOutput("Out", {"out2"});
|
|
|
|
f::OpDesc *op3 = block->AppendOp();
|
|
op3->SetType("rowwise_add");
|
|
op3->SetInput("X", {"out2"});
|
|
op3->SetInput("b", {"b3"});
|
|
op3->SetOutput("Out", {"out3"});
|
|
|
|
auto target = f::VarDesc("out3");
|
|
target.SetShape({1});
|
|
size_t forward_len = block->AllOps().size();
|
|
auto var_to_grad =
|
|
AppendBackward(program, target, std::unordered_set<std::string>{});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 6UL + 1);
|
|
f::OpDesc *fill_op = block->AllOps()[forward_len];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op1 = block->AllOps()[6];
|
|
EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("x1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b1")}));
|
|
|
|
f::OpDesc *grad_op2 = block->AllOps()[5];
|
|
EXPECT_EQ(grad_op2->Type(), "mul_grad");
|
|
ASSERT_EQ(grad_op2->InputNames().size(), 4UL);
|
|
ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"out1"}));
|
|
EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
|
|
EXPECT_EQ(grad_op2->Input("Out"), std::vector<std::string>({"out2"}));
|
|
EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out2")}));
|
|
EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")),
|
|
std::vector<std::string>({f::GradVarName("y2")}));
|
|
|
|
f::OpDesc *grad_op3 = block->AllOps()[4];
|
|
EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out3")}));
|
|
EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("out2")}));
|
|
EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b3")}));
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 7UL);
|
|
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
|
|
EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
|
|
EXPECT_EQ(var_to_grad.at("out1"),
|
|
f::GradVarInfo(f::GradVarName("out1"), 0, 5));
|
|
EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
|
|
EXPECT_EQ(var_to_grad.at("out2"),
|
|
f::GradVarInfo(f::GradVarName("out2"), 0, 4));
|
|
EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
|
|
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("out2")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
|
|
}
|
|
|
|
TEST(Backward, intermedia_var_no_grad) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
f::OpDesc *op1 = block->AppendOp();
|
|
op1->SetType("rowwise_add");
|
|
op1->SetInput("X", {"x1"});
|
|
op1->SetInput("b", {"b1"});
|
|
op1->SetOutput("Out", {"out1"});
|
|
|
|
f::OpDesc *op2 = block->AppendOp();
|
|
op2->SetType("mul");
|
|
op2->SetInput("X", {"x2"});
|
|
op2->SetInput("Y", {"y2"});
|
|
op2->SetOutput("Out", {"out2"});
|
|
|
|
f::OpDesc *op3 = block->AppendOp();
|
|
op3->SetType("rowwise_add");
|
|
op3->SetInput("X", {"out2"});
|
|
op3->SetInput("b", {"b3"});
|
|
op3->SetOutput("Out", {"out3"});
|
|
|
|
f::OpDesc *op4 = block->AppendOp();
|
|
op4->SetType("mul");
|
|
op4->SetInput("X", {"out1"});
|
|
op4->SetInput("Y", {"out3"});
|
|
op4->SetOutput("Out", {"out4"});
|
|
|
|
auto target = f::VarDesc("out4");
|
|
target.SetShape({1});
|
|
size_t forward_len = block->AllOps().size();
|
|
auto var_to_grad = AppendBackward(program, target, {"out3"});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 7UL);
|
|
f::OpDesc *fill_op = block->AllOps()[forward_len];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op1 = block->AllOps()[6];
|
|
EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("x1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b1")}));
|
|
|
|
f::OpDesc *grad_op4 = block->AllOps()[5];
|
|
EXPECT_EQ(grad_op4->Type(), "mul_grad");
|
|
ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
|
|
ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
|
|
EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"out3"}));
|
|
EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out4"}));
|
|
EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out4")}));
|
|
EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector<std::string>());
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 4UL);
|
|
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
|
|
EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
|
|
EXPECT_EQ(var_to_grad.at("out1"),
|
|
f::GradVarInfo(f::GradVarName("out1"), 0, 5));
|
|
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
|
|
}
|
|
|
|
TEST(Backward, var_no_grad) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
f::OpDesc *op1 = block->AppendOp();
|
|
op1->SetType("mult_in_out");
|
|
op1->SetInput("X", {"x1"});
|
|
op1->SetInput("H", {"h1"});
|
|
op1->SetOutput("Y", {"y1"});
|
|
op1->SetOutput("Z", {"z1"});
|
|
|
|
f::OpDesc *op2 = block->AppendOp();
|
|
op2->SetType("mult_in_out");
|
|
op2->SetInput("X", {"y1"});
|
|
op2->SetInput("H", {"z1"});
|
|
op2->SetOutput("Y", {"y2"});
|
|
op2->SetOutput("Z", {"z2"});
|
|
|
|
auto target = f::VarDesc("z2");
|
|
target.SetShape({1});
|
|
size_t forward_len = block->AllOps().size();
|
|
auto var_to_grad = AppendBackward(program, target, {"z1"});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 6UL);
|
|
f::OpDesc *fill_op = block->AllOps()[forward_len];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op2 = block->AllOps()[3];
|
|
ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad");
|
|
ASSERT_EQ(grad_op2->InputNames().size(), 6UL);
|
|
ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"y1"}));
|
|
EXPECT_EQ(grad_op2->Input("H"), std::vector<std::string>({"z1"}));
|
|
EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
|
|
EXPECT_EQ(grad_op2->Input("Z"), std::vector<std::string>({"z2"}));
|
|
EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")),
|
|
std::vector<std::string>({f::GradVarName("y2")}));
|
|
EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")),
|
|
std::vector<std::string>({f::GradVarName("z2")}));
|
|
EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("y1")}));
|
|
EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector<std::string>());
|
|
|
|
f::OpDesc *fill_zero_op = block->AllOps()[4];
|
|
ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like");
|
|
ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL);
|
|
ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL);
|
|
EXPECT_EQ(fill_zero_op->Input("X"), std::vector<std::string>({"z1"}));
|
|
EXPECT_EQ(fill_zero_op->Output("Out"),
|
|
std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
|
|
|
|
f::OpDesc *grad_op1 = block->AllOps()[5];
|
|
ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad");
|
|
ASSERT_EQ(grad_op1->InputNames().size(), 6UL);
|
|
ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op1->Input("X"), std::vector<std::string>({"x1"}));
|
|
EXPECT_EQ(grad_op1->Input("H"), std::vector<std::string>({"h1"}));
|
|
EXPECT_EQ(grad_op1->Input("Y"), std::vector<std::string>({"y1"}));
|
|
EXPECT_EQ(grad_op1->Input("Z"), std::vector<std::string>({"z1"}));
|
|
EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")),
|
|
std::vector<std::string>({f::GradVarName("y1")}));
|
|
EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")),
|
|
std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("x1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
|
|
std::vector<std::string>({f::GradVarName("h1")}));
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 4UL);
|
|
EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3));
|
|
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5));
|
|
EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5));
|
|
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("y1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("h1")));
|
|
}
|
|
|
|
TEST(Backward, shared_var) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
f::OpDesc *op1 = block->AppendOp();
|
|
op1->SetType("rowwise_add");
|
|
op1->SetInput("X", {"x1"});
|
|
op1->SetInput("b", {"b1"});
|
|
op1->SetOutput("Out", {"out1"});
|
|
|
|
f::OpDesc *op2 = block->AppendOp();
|
|
op2->SetType("mul");
|
|
op2->SetInput("X", {"out1"});
|
|
op2->SetInput("Y", {"y2"});
|
|
op2->SetOutput("Out", {"out2"});
|
|
|
|
f::OpDesc *op3 = block->AppendOp();
|
|
op3->SetType("rowwise_add");
|
|
op3->SetInput("X", {"out1"});
|
|
op3->SetInput("b", {"b3"});
|
|
op3->SetOutput("Out", {"out3"});
|
|
|
|
auto target = f::VarDesc("out3");
|
|
target.SetShape({1});
|
|
size_t forward_len = block->AllOps().size();
|
|
auto var_to_grad =
|
|
AppendBackward(program, target, std::unordered_set<std::string>{});
|
|
|
|
ASSERT_EQ(block->AllOps().size(), 8UL);
|
|
f::OpDesc *fill_op = block->AllOps()[forward_len];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
|
|
f::OpDesc *grad_op3 = block->AllOps()[4];
|
|
ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out3")}));
|
|
EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0"}));
|
|
EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b3")}));
|
|
|
|
f::OpDesc *grad_op4 = block->AllOps()[5];
|
|
ASSERT_EQ(grad_op4->Type(), "mul_grad");
|
|
ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
|
|
ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
|
|
EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"y2"}));
|
|
EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out2"}));
|
|
EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out2")}));
|
|
EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("out1") + "@RENAME@1"}));
|
|
EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
|
|
std::vector<std::string>({f::GradVarName("y2")}));
|
|
|
|
f::OpDesc *sum_op = block->AllOps()[6];
|
|
ASSERT_EQ(sum_op->Type(), "sum");
|
|
ASSERT_EQ(sum_op->InputNames().size(), 1UL);
|
|
ASSERT_EQ(sum_op->OutputNames().size(), 1UL);
|
|
EXPECT_EQ(sum_op->Input("X"),
|
|
std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0",
|
|
f::GradVarName("out1") + "@RENAME@1"}));
|
|
EXPECT_EQ(sum_op->Output("Out"),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
|
|
f::OpDesc *grad_op1 = block->AllOps()[7];
|
|
ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad");
|
|
ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
|
|
ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
|
|
EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
|
|
std::vector<std::string>({f::GradVarName("out1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
|
|
std::vector<std::string>({f::GradVarName("x1")}));
|
|
EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
|
|
std::vector<std::string>({f::GradVarName("b1")}));
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 6UL);
|
|
EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
|
|
EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
|
|
EXPECT_EQ(var_to_grad.at("out1"),
|
|
f::GradVarInfo(f::GradVarName("out1"), 0, 6));
|
|
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 7));
|
|
EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 7));
|
|
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
|
|
EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
|
|
}
|
|
|
|
TEST(Backward, half_backward) {
|
|
f::ProgramDesc program;
|
|
f::BlockDesc *block = program.MutableBlock(0);
|
|
auto *op1 = block->AppendOp();
|
|
op1->SetType("minus");
|
|
op1->SetInput("X", {"a"});
|
|
op1->SetInput("Y", {"b"});
|
|
op1->SetOutput("Out", {"out"});
|
|
|
|
auto target = f::VarDesc("out");
|
|
target.SetShape({1});
|
|
size_t forward_len = block->AllOps().size();
|
|
auto var_to_grad = AppendBackward(program, target, {"b"});
|
|
f::OpDesc *fill_op = block->AllOps()[forward_len];
|
|
EXPECT_EQ(fill_op->Type(), "fill_constant");
|
|
auto ops = block->AllOps();
|
|
ASSERT_EQ(3UL, ops.size());
|
|
|
|
EXPECT_EQ(var_to_grad.size(), 2UL);
|
|
EXPECT_EQ(var_to_grad.at("a"),
|
|
f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1));
|
|
}
|