You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/math/pool_test_maxPool2d.cc

150 lines
5.4 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/operators/math/pooling.h"
#include "paddle/memory/memcpy.h"
#include "paddle/platform/enforce.h"
#include <stdlib.h>
#include <time.h>
#ifndef PADDLE_ONLY_CPU
template <typename PooType>
void testPool2d(paddle::platform::DeviceContext& context, PooType pool_process,
paddle::framework::Tensor& input,
paddle::framework::Tensor& input_grad,
paddle::framework::Tensor& output,
paddle::framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) {
paddle::operators::math::Pool2dForwardFunctor<paddle::platform::GPUPlace,
PooType, float>
pool2d_forward;
pool2d_forward(context, input, output, ksize, strides, paddings,
pool_process);
int times = 50;
clock_t start, finish;
double totaltime;
// Pool2dBackwardFunctor
start = clock();
for (int i = 0; i < times; ++i) {
paddle::operators::math::Pool2dBackwardFunctor<paddle::platform::GPUPlace,
PooType, float>
pool2d_backward;
pool2d_backward(context, input, input_grad, output, output_grad, ksize,
strides, paddings, pool_process);
PADDLE_ENFORCE(cudaStreamSynchronize(0),
"cudaStreamSynchronize failed in pool2d_backward CopyFrom");
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
totaltime /= times;
std::cout << "\nPool3dBackwardFunctor: " << totaltime << "s" << std::endl;
// MaxPool3dBackwardFunctor
start = clock();
for (int j = 0; j < times; ++j) {
paddle::operators::math::MaxPool2dBackwardFunctor<
paddle::platform::GPUPlace, float>
maxpool2d_backward;
maxpool2d_backward(context, input, input_grad, output, output_grad, ksize,
strides, paddings);
PADDLE_ENFORCE(
cudaStreamSynchronize(0),
"cudaStreamSynchronize failed in maxpool2d_backward CopyFrom");
}
finish = clock();
totaltime = (double)(finish - start) / CLOCKS_PER_SEC;
totaltime /= times;
std::cout << "\nMaxPool3dBackwardFunctor: " << totaltime << "s" << std::endl;
}
void test2dPool() {
using paddle::platform::DeviceContext;
using paddle::platform::CUDADeviceContext;
using paddle::platform::GPUPlace;
paddle::framework::Tensor input_tmp;
paddle::framework::Tensor output_tmp;
paddle::framework::Tensor input;
paddle::framework::Tensor input_grad;
paddle::framework::Tensor output;
paddle::framework::Tensor output_grad;
int batch = 32;
int channel = 32;
int input_height = 128;
int input_width = 128;
int in_len = batch * channel * input_height * input_width;
std::vector<int> ksize({3, 3});
std::vector<int> strides({1, 1});
std::vector<int> paddings({0, 0});
int output_height =
(input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
int output_width =
(input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
int output_len = output_height * output_width;
input_tmp.mutable_data<float>({batch, channel, input_height, input_width},
paddle::platform::CPUPlace());
output_tmp.mutable_data<float>({batch, channel, output_height, output_width},
paddle::platform::CPUPlace());
float* arr = new float[in_len];
auto* place = new paddle::platform::GPUPlace();
float* input_ptr = input_tmp.data<float>();
for (int i = 0; i < in_len; ++i) arr[i] = i; // rand() / double(RAND_MAX/2);
memcpy(input_ptr, arr, in_len * sizeof(float));
input.CopyFrom<float>(input_tmp, *place);
input_ptr = input_tmp.data<float>();
for (int i = 0; i < in_len; ++i) arr[i] = 0;
memcpy(input_ptr, arr, in_len * sizeof(float));
input_grad.CopyFrom<float>(input_tmp, *place);
// output
input_ptr = output_tmp.data<float>();
for (int i = 0; i < output_len; ++i)
arr[i] = 0; // rand() / double(RAND_MAX/2);
memcpy(input_ptr, arr, output_len * sizeof(float));
output.CopyFrom<float>(input_tmp, *place);
// output
input_ptr = output_tmp.data<float>();
for (int i = 0; i < output_len; ++i)
arr[i] = 1; // rand() / double(RAND_MAX/2);
memcpy(input_ptr, arr, output_len * sizeof(float));
output_grad.CopyFrom<float>(input_tmp, *place);
paddle::platform::DeviceContext* context =
new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace());
paddle::operators::math::pool::maxPool<float> pool_process;
testPool2d<paddle::operators::math::pool::maxPool<float>>(
*context, pool_process, input, input_grad, output, output_grad, ksize,
strides, paddings);
}
int main() {
// testPool3d<paddle::platform::CPUPlace>();
test2dPool();
// testPool3d<paddle::platform::GPUPlace>();
}
#endif