You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
4.8 KiB
142 lines
4.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file contains a simple demo for how to take a model for inference.
|
|
*/
|
|
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include "contrib/inference/paddle_inference_api.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
DEFINE_bool(use_gpu, false, "Whether use gpu.");
|
|
|
|
namespace paddle {
|
|
namespace demo {
|
|
|
|
void Main(bool use_gpu) {
|
|
//# 1. Create PaddlePredictor with a config.
|
|
NativeConfig config;
|
|
if (FLAGS_dirname.empty()) {
|
|
LOG(INFO) << "Usage: ./simple_on_word2vec --dirname=path/to/your/model";
|
|
exit(1);
|
|
}
|
|
config.model_dir = FLAGS_dirname;
|
|
config.use_gpu = use_gpu;
|
|
config.fraction_of_gpu_memory = 0.15;
|
|
config.device = 0;
|
|
auto predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
|
|
for (int batch_id = 0; batch_id < 3; batch_id++) {
|
|
//# 2. Prepare input.
|
|
int64_t data[4] = {1, 2, 3, 4};
|
|
|
|
PaddleTensor tensor{.name = "",
|
|
.shape = std::vector<int>({4, 1}),
|
|
.data = PaddleBuf(data, sizeof(data)),
|
|
.dtype = PaddleDType::INT64};
|
|
|
|
// For simplicity, we set all the slots with the same data.
|
|
std::vector<PaddleTensor> slots(4, tensor);
|
|
|
|
//# 3. Run
|
|
std::vector<PaddleTensor> outputs;
|
|
CHECK(predictor->Run(slots, &outputs));
|
|
|
|
//# 4. Get output.
|
|
PADDLE_ENFORCE(outputs.size(), 1UL);
|
|
// Check the output buffer size and result of each tid.
|
|
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
|
|
float result[5] = {
|
|
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
|
|
const size_t num_elements = outputs.front().data.length() / sizeof(float);
|
|
// The outputs' buffers are in CPU memory.
|
|
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
|
|
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
|
|
result[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MainThreads(int num_threads, bool use_gpu) {
|
|
// Multi-threads only support on CPU
|
|
// 0. Create PaddlePredictor with a config.
|
|
NativeConfig config;
|
|
config.model_dir = FLAGS_dirname;
|
|
config.use_gpu = use_gpu;
|
|
config.fraction_of_gpu_memory = 0.15;
|
|
config.device = 0;
|
|
auto main_predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
|
|
std::vector<std::thread> threads;
|
|
for (int tid = 0; tid < num_threads; ++tid) {
|
|
threads.emplace_back([&, tid]() {
|
|
// 1. clone a predictor which shares the same parameters
|
|
auto predictor = main_predictor->Clone();
|
|
constexpr int num_batches = 3;
|
|
for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
|
|
// 2. Dummy Input Data
|
|
int64_t data[4] = {1, 2, 3, 4};
|
|
PaddleTensor tensor{.name = "",
|
|
.shape = std::vector<int>({4, 1}),
|
|
.data = PaddleBuf(data, sizeof(data)),
|
|
.dtype = PaddleDType::INT64};
|
|
std::vector<PaddleTensor> inputs(4, tensor);
|
|
std::vector<PaddleTensor> outputs;
|
|
// 3. Run
|
|
CHECK(predictor->Run(inputs, &outputs));
|
|
|
|
// 4. Get output.
|
|
PADDLE_ENFORCE(outputs.size(), 1UL);
|
|
// Check the output buffer size and result of each tid.
|
|
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
|
|
float result[5] = {
|
|
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
|
|
const size_t num_elements =
|
|
outputs.front().data.length() / sizeof(float);
|
|
// The outputs' buffers are in CPU memory.
|
|
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
|
|
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
|
|
result[i]);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
for (int i = 0; i < num_threads; ++i) {
|
|
threads[i].join();
|
|
}
|
|
}
|
|
|
|
} // namespace demo
|
|
} // namespace paddle
|
|
|
|
int main(int argc, char** argv) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
paddle::demo::Main(false /* use_gpu*/);
|
|
paddle::demo::MainThreads(1, false /* use_gpu*/);
|
|
paddle::demo::MainThreads(4, false /* use_gpu*/);
|
|
if (FLAGS_use_gpu) {
|
|
paddle::demo::Main(true /*use_gpu*/);
|
|
paddle::demo::MainThreads(1, true /*use_gpu*/);
|
|
paddle::demo::MainThreads(4, true /*use_gpu*/);
|
|
}
|
|
return 0;
|
|
}
|