You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/ir/fc_gru_fuse_pass.cc

214 lines
7.4 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
#include <string>
#include <unordered_set>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace framework {
namespace ir {
class Node;
static int BuildFusion(Graph* graph, const std::string& name_scope,
Scope* scope, bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
PDNode* x =
pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();
// Create pattern.
patterns::FC fc_pattern(pattern, name_scope);
auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
patterns::GRU gru_pattern(pattern, name_scope);
gru_pattern(fc_out);
// Create New OpDesc
auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
Node* bias, Node* hidden, Node* fc_bias) {
OpDesc op_desc;
op_desc.SetType("fusion_gru");
#define NEW_NAME(x) name_scope + "/at." #x ".new"
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN(X, x);
SET_IN(WeightX, weight_x);
SET_IN(WeightH, weight_h);
SET_IN(Bias, bias);
#undef SET_IN
// TODO(grygielski): Add H0 to the pass
op_desc.SetInput("H0", {});
op_desc.SetOutput("Hidden", {hidden->Name()});
op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("origin_mode",
gru->Op()->GetAttrIfExists<bool>("origin_mode"));
// TODO(TJ): This should be a option for infer
op_desc.SetAttr("use_seq", true);
op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
SET_IMTERMEDIATE_OUT(ReorderedH0);
SET_IMTERMEDIATE_OUT(XX);
SET_IMTERMEDIATE_OUT(BatchedInput);
SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT
auto* op = graph->CreateOpNode(&op_desc);
if (with_fc_bias) {
auto* gru_bias_var = scope->FindVar(bias->Name());
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
PADDLE_ENFORCE_NE(
gru_bias_var, nullptr,
platform::errors::NotFound("GRU bias var has not been found."));
PADDLE_ENFORCE_NE(
fc_bias_var, nullptr,
platform::errors::NotFound("FC bias var has not been found."));
auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
PADDLE_ENFORCE_EQ(
gru_bias_tensor->numel(), fc_bias_tensor->numel(),
platform::errors::PreconditionNotMet(
"GRU and FC biases have to have equal number of elements."));
auto gru_bias_data =
gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
auto* fc_bias_data = fc_bias_tensor->data<float>();
// Recompute GRU bias
for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
gru_bias_data[i] += fc_bias_data[i];
}
}
#undef GET_NODE
#define NEW_IMTERMEDIATE_OUT(key) \
VarDesc key(NEW_NAME(key)); \
key.SetPersistable(false); \
auto* key##_node = graph->CreateVarNode(&key); \
IR_NODE_LINK_TO(op, key##_node);
NEW_IMTERMEDIATE_OUT(ReorderedH0);
NEW_IMTERMEDIATE_OUT(XX);
NEW_IMTERMEDIATE_OUT(BatchedInput);
NEW_IMTERMEDIATE_OUT(BatchedOut);
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
IR_NODE_LINK_TO(x, op);
IR_NODE_LINK_TO(weight_x, op);
IR_NODE_LINK_TO(weight_h, op);
IR_NODE_LINK_TO(bias, op);
IR_NODE_LINK_TO(op, hidden);
// h0?
return op;
};
int fusion_count{0};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
auto* x_n = subgraph.at(x);
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
// nodes need be removed
GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
gru_pattern);
GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
// TODO(wilber): Support origin_mode=True.
if (gru->Op()->GetAttrIfExists<bool>("origin_mode") == true) {
LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True.";
return;
}
if (with_fc_bias) {
GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
BatchResetHiddenPrev, BatchHidden});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
GraphSafeRemoveNodes(graph, marked_nodes);
}
#undef GET_NODE
++fusion_count;
};
gpd(graph, handler);
return fusion_count;
}
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
FusePassBase::Init(name_scope_, graph);
int fusion_count =
BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
AddStatis(fusion_count);
}
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
FusePassBase::Init(name_scope_, graph);
int fusion_count =
BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
AddStatis(fusion_count);
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination()
.EQ("mul", 0)
.EQ("gru", 0)
.EQ("fusion_gru", 0));
REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination()
.EQ("mul", 0)
.EQ("elementwise_add", 0)
.EQ("gru", 0)
.EQ("fusion_gru", 0));