You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
7.4 KiB
214 lines
7.4 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
|
|
#include <string>
|
|
#include <unordered_set>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace ir {
|
|
|
|
class Node;
|
|
|
|
static int BuildFusion(Graph* graph, const std::string& name_scope,
|
|
Scope* scope, bool with_fc_bias) {
|
|
GraphPatternDetector gpd;
|
|
auto* pattern = gpd.mutable_pattern();
|
|
|
|
PDNode* x =
|
|
pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable();
|
|
|
|
// Create pattern.
|
|
patterns::FC fc_pattern(pattern, name_scope);
|
|
auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
|
|
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
|
|
|
|
patterns::GRU gru_pattern(pattern, name_scope);
|
|
gru_pattern(fc_out);
|
|
|
|
// Create New OpDesc
|
|
auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h,
|
|
Node* bias, Node* hidden, Node* fc_bias) {
|
|
OpDesc op_desc;
|
|
op_desc.SetType("fusion_gru");
|
|
|
|
#define NEW_NAME(x) name_scope + "/at." #x ".new"
|
|
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
|
|
SET_IN(X, x);
|
|
SET_IN(WeightX, weight_x);
|
|
SET_IN(WeightH, weight_h);
|
|
SET_IN(Bias, bias);
|
|
#undef SET_IN
|
|
// TODO(grygielski): Add H0 to the pass
|
|
op_desc.SetInput("H0", {});
|
|
op_desc.SetOutput("Hidden", {hidden->Name()});
|
|
op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse"));
|
|
op_desc.SetAttr("origin_mode",
|
|
gru->Op()->GetAttrIfExists<bool>("origin_mode"));
|
|
// TODO(TJ): This should be a option for infer
|
|
op_desc.SetAttr("use_seq", true);
|
|
op_desc.SetAttr("activation", gru->Op()->GetAttr("activation"));
|
|
op_desc.SetAttr("gate_activation", gru->Op()->GetAttr("gate_activation"));
|
|
|
|
#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
|
|
SET_IMTERMEDIATE_OUT(ReorderedH0);
|
|
SET_IMTERMEDIATE_OUT(XX);
|
|
SET_IMTERMEDIATE_OUT(BatchedInput);
|
|
SET_IMTERMEDIATE_OUT(BatchedOut);
|
|
#undef SET_IMTERMEDIATE_OUT
|
|
|
|
auto* op = graph->CreateOpNode(&op_desc);
|
|
if (with_fc_bias) {
|
|
auto* gru_bias_var = scope->FindVar(bias->Name());
|
|
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
|
|
PADDLE_ENFORCE_NE(
|
|
gru_bias_var, nullptr,
|
|
platform::errors::NotFound("GRU bias var has not been found."));
|
|
PADDLE_ENFORCE_NE(
|
|
fc_bias_var, nullptr,
|
|
platform::errors::NotFound("FC bias var has not been found."));
|
|
|
|
auto* gru_bias_tensor = gru_bias_var->GetMutable<LoDTensor>();
|
|
auto* fc_bias_tensor = fc_bias_var->GetMutable<LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(
|
|
gru_bias_tensor->numel(), fc_bias_tensor->numel(),
|
|
platform::errors::PreconditionNotMet(
|
|
"GRU and FC biases have to have equal number of elements."));
|
|
|
|
auto gru_bias_data =
|
|
gru_bias_tensor->mutable_data<float>(platform::CPUPlace());
|
|
auto* fc_bias_data = fc_bias_tensor->data<float>();
|
|
|
|
// Recompute GRU bias
|
|
for (int i = 0; i < gru_bias_tensor->numel(); ++i) {
|
|
gru_bias_data[i] += fc_bias_data[i];
|
|
}
|
|
}
|
|
#undef GET_NODE
|
|
|
|
#define NEW_IMTERMEDIATE_OUT(key) \
|
|
VarDesc key(NEW_NAME(key)); \
|
|
key.SetPersistable(false); \
|
|
auto* key##_node = graph->CreateVarNode(&key); \
|
|
IR_NODE_LINK_TO(op, key##_node);
|
|
|
|
NEW_IMTERMEDIATE_OUT(ReorderedH0);
|
|
NEW_IMTERMEDIATE_OUT(XX);
|
|
NEW_IMTERMEDIATE_OUT(BatchedInput);
|
|
NEW_IMTERMEDIATE_OUT(BatchedOut);
|
|
#undef NEW_NAME
|
|
#undef NEW_IMTERMEDIATE_OUT
|
|
|
|
IR_NODE_LINK_TO(x, op);
|
|
IR_NODE_LINK_TO(weight_x, op);
|
|
IR_NODE_LINK_TO(weight_h, op);
|
|
IR_NODE_LINK_TO(bias, op);
|
|
IR_NODE_LINK_TO(op, hidden);
|
|
// h0?
|
|
return op;
|
|
};
|
|
|
|
int fusion_count{0};
|
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
|
Graph* g) {
|
|
auto* x_n = subgraph.at(x);
|
|
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern);
|
|
// nodes need be removed
|
|
GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchResetHiddenPrev,
|
|
gru_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchHidden, gru_pattern);
|
|
|
|
// TODO(wilber): Support origin_mode=True.
|
|
if (gru->Op()->GetAttrIfExists<bool>("origin_mode") == true) {
|
|
LOG(INFO) << "fc_gru_fuse_pass not supported when origin_mode=True.";
|
|
return;
|
|
}
|
|
|
|
if (with_fc_bias) {
|
|
GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
|
|
|
|
gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias);
|
|
// Remove unneeded nodes.
|
|
std::unordered_set<const Node*> marked_nodes(
|
|
{mul, gru, elementwise_add, fc_out, mul_out, BatchGate,
|
|
BatchResetHiddenPrev, BatchHidden});
|
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
|
} else {
|
|
gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr);
|
|
// Remove unneeded nodes.
|
|
std::unordered_set<const Node*> marked_nodes(
|
|
{mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden});
|
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
|
}
|
|
#undef GET_NODE
|
|
|
|
++fusion_count;
|
|
};
|
|
|
|
gpd(graph, handler);
|
|
|
|
return fusion_count;
|
|
}
|
|
|
|
void MulGRUFusePass::ApplyImpl(ir::Graph* graph) const {
|
|
FusePassBase::Init(name_scope_, graph);
|
|
|
|
int fusion_count =
|
|
BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
|
|
|
|
AddStatis(fusion_count);
|
|
}
|
|
|
|
void FCGRUFusePass::ApplyImpl(ir::Graph* graph) const {
|
|
FusePassBase::Init(name_scope_, graph);
|
|
|
|
int fusion_count =
|
|
BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
|
|
|
|
AddStatis(fusion_count);
|
|
}
|
|
|
|
} // namespace ir
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
|
|
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
|
|
REGISTER_PASS_CAPABILITY(mul_gru_fuse_pass)
|
|
.AddCombination(
|
|
paddle::framework::compatible::OpVersionComparatorCombination()
|
|
.EQ("mul", 0)
|
|
.EQ("gru", 0)
|
|
.EQ("fusion_gru", 0));
|
|
REGISTER_PASS_CAPABILITY(fc_gru_fuse_pass)
|
|
.AddCombination(
|
|
paddle::framework::compatible::OpVersionComparatorCombination()
|
|
.EQ("mul", 0)
|
|
.EQ("elementwise_add", 0)
|
|
.EQ("gru", 0)
|
|
.EQ("fusion_gru", 0));
|