You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
230 lines
6.1 KiB
230 lines
6.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import os
|
|
from .layer_function_generator import generate_layer_fn, generate_activation_fn
|
|
from .. import core
|
|
from ..framework import convert_np_dtype_to_dtype_
|
|
|
|
__activations_noattr__ = [
|
|
'sigmoid',
|
|
'logsigmoid',
|
|
'exp',
|
|
'tanh',
|
|
'atan',
|
|
'tanh_shrink',
|
|
'sqrt',
|
|
'rsqrt',
|
|
'abs',
|
|
'ceil',
|
|
'floor',
|
|
'cos',
|
|
'acos',
|
|
'asin',
|
|
'sin',
|
|
'round',
|
|
'reciprocal',
|
|
'square',
|
|
'softplus',
|
|
'softsign',
|
|
]
|
|
|
|
__all__ = []
|
|
|
|
for _OP in set(__all__):
|
|
globals()[_OP] = generate_layer_fn(_OP)
|
|
|
|
# It is a hot fix in some unittest using:
|
|
# fluid.layers.scale(x=x, scale=10.0, out=out_var)
|
|
# e.g.: test_program_code.py, test_dist_train.py
|
|
globals()['_scale'] = generate_layer_fn('scale')
|
|
|
|
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')
|
|
|
|
__all__ += __activations_noattr__
|
|
|
|
for _OP in set(__activations_noattr__):
|
|
globals()[_OP] = generate_activation_fn(_OP)
|
|
|
|
__all__ += ['softshrink']
|
|
|
|
_softshrink_ = generate_layer_fn('softshrink')
|
|
|
|
|
|
def softshrink(x, alpha=None):
|
|
locals_var = locals().copy()
|
|
kwargs = dict()
|
|
for name, val in locals_var.items():
|
|
if val is not None:
|
|
if name == 'alpha':
|
|
kwargs['lambda'] = val
|
|
else:
|
|
kwargs[name] = val
|
|
return _softshrink_(**kwargs)
|
|
|
|
|
|
softshrink.__doc__ = """
|
|
:strong:`Softshrink Activation Operator`
|
|
|
|
.. math::
|
|
out = \begin{cases}
|
|
x - \alpha, \text{if } x > \alpha \\
|
|
x + \alpha, \text{if } x < -\alpha \\
|
|
0, \text{otherwise}
|
|
\end{cases}
|
|
|
|
|
|
Args:
|
|
x: Input of Softshrink operator
|
|
alpha (FLOAT): non-negative offset
|
|
|
|
Returns:
|
|
Output of Softshrink operator
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
data = fluid.layers.data(name="input", shape=[784])
|
|
result = fluid.layers.softshrink(x=data, alpha=0.3)
|
|
"""
|
|
|
|
__all__ += ['hard_shrink']
|
|
|
|
_hard_shrink_ = generate_layer_fn('hard_shrink')
|
|
|
|
|
|
def hard_shrink(x, threshold=None):
|
|
locals_var = locals().copy()
|
|
kwargs = dict()
|
|
for name, val in locals_var.items():
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
return _hard_shrink_(**kwargs)
|
|
|
|
|
|
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> import paddle.fluid as fluid
|
|
>>> data = fluid.layers.data(name="input", shape=[784])
|
|
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
|
|
"""
|
|
|
|
__all__ += ['cumsum']
|
|
|
|
_cum_sum_ = generate_layer_fn('cumsum')
|
|
|
|
|
|
def cumsum(x, axis=None, exclusive=None, reverse=None):
|
|
locals_var = locals().copy()
|
|
kwargs = dict()
|
|
for name, val in locals_var.items():
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
return _cum_sum_(**kwargs)
|
|
|
|
|
|
cumsum.__doc__ = _cum_sum_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> import paddle.fluid as fluid
|
|
>>> data = fluid.layers.data(name="input", shape=[32, 784])
|
|
>>> result = fluid.layers.cumsum(data, axis=0)
|
|
"""
|
|
|
|
__all__ += ['thresholded_relu']
|
|
|
|
_thresholded_relu_ = generate_layer_fn('thresholded_relu')
|
|
|
|
|
|
def thresholded_relu(x, threshold=None):
|
|
locals_var = locals().copy()
|
|
kwargs = dict()
|
|
for name, val in locals_var.items():
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
|
|
return _thresholded_relu_(**kwargs)
|
|
|
|
|
|
thresholded_relu.__doc__ = """
|
|
:strong:`Thresholded ReLU Activation Operator`
|
|
|
|
Equation:
|
|
.. math::
|
|
out = \\begin{cases}
|
|
x, &if x > threshold \\\\
|
|
0, &otherwise
|
|
\\end{cases}
|
|
|
|
Args:
|
|
x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
|
|
|
|
threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.
|
|
|
|
Returns:
|
|
|
|
Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
# declarative mode
|
|
import numpy as np
|
|
from paddle import fluid
|
|
|
|
x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
|
|
y = fluid.layers.thresholded_relu(x, threshold=0.1)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
start = fluid.default_startup_program()
|
|
main = fluid.default_main_program()
|
|
|
|
data = np.random.randn(2, 3).astype("float32")
|
|
exe.run(start)
|
|
|
|
y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
|
|
|
|
data
|
|
# array([[ 0.21134382, -1.1805999 , 0.32876605],
|
|
# [-1.2210793 , -0.7365624 , 1.0013918 ]], dtype=float32)
|
|
y_np
|
|
# array([[ 0.21134382, -0. , 0.32876605],
|
|
# [-0. , -0. , 1.0013918 ]], dtype=float32)
|
|
|
|
.. code-block:: python
|
|
|
|
# imperative mode
|
|
import numpy as np
|
|
from paddle import fluid
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
data = np.random.randn(2, 3).astype("float32")
|
|
place = fluid.CPUPlace()
|
|
with dg.guard(place) as g:
|
|
x = dg.to_variable(data)
|
|
y = fluid.layers.thresholded_relu(x, threshold=0.1)
|
|
y_np = y.numpy()
|
|
data
|
|
# array([[ 0.21134382, -1.1805999 , 0.32876605],
|
|
# [-1.2210793 , -0.7365624 , 1.0013918 ]], dtype=float32)
|
|
y_np
|
|
# array([[ 0.21134382, -0. , 0.32876605],
|
|
# [-0. , -0. , 1.0013918 ]], dtype=float32)
|
|
"""
|