You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							152 lines
						
					
					
						
							5.5 KiB
						
					
					
				
			
		
		
	
	
							152 lines
						
					
					
						
							5.5 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include <thrust/execution_policy.h>
 | 
						|
#include <thrust/sort.h>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/argsort_op.h"
 | 
						|
#include "paddle/fluid/platform/assert.h"
 | 
						|
#include "paddle/fluid/platform/cuda_device_function.h"
 | 
						|
#include "paddle/fluid/platform/cuda_primitives.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
using platform::PADDLE_CUDA_NUM_THREADS;
 | 
						|
 | 
						|
const int kMaxRank = 9;  // The max rank of a tensor allowed in Fluid
 | 
						|
 | 
						|
__global__ void ComputeTargetIdx(const int64_t* in_dims, int dims_size,
 | 
						|
                                 int axis, int64_t n, int64_t* trg_idx,
 | 
						|
                                 int64_t* med_ids) {
 | 
						|
  int64_t index = threadIdx.x + blockDim.x * blockIdx.x;
 | 
						|
  if (index < n) {
 | 
						|
    int64_t shape_out_axis[kMaxRank - 1] = {0};
 | 
						|
    int64_t dims_out_axis[kMaxRank - 1] = {0};
 | 
						|
    int64_t tmp = index;
 | 
						|
    int64_t pos_in_axis = 0;
 | 
						|
    int64_t i = dims_size - 2;
 | 
						|
    int64_t dim_axis = 0;
 | 
						|
    for (int64_t j = dims_size - 1; j >= 0; --j) {
 | 
						|
      int64_t dim = in_dims[j];
 | 
						|
      if (j != axis) {
 | 
						|
        shape_out_axis[i] = tmp % dim;
 | 
						|
        dims_out_axis[i] = dim;
 | 
						|
        i--;
 | 
						|
      } else {
 | 
						|
        dim_axis = dim;
 | 
						|
        pos_in_axis = tmp % dim_axis;
 | 
						|
      }
 | 
						|
      tmp /= dim;
 | 
						|
    }
 | 
						|
    int64_t group = (dims_size > 1) ? shape_out_axis[0] : 0;
 | 
						|
    for (int64_t j = 0; j < dims_size - 2; ++j) {
 | 
						|
      group = group * dims_out_axis[j + 1] + shape_out_axis[j + 1];
 | 
						|
    }
 | 
						|
 | 
						|
    int64_t traget_idx = group * dim_axis + pos_in_axis;
 | 
						|
    trg_idx[index] = traget_idx;
 | 
						|
    med_ids[traget_idx] = pos_in_axis;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void PermuteInData(const T* in, const int64_t* trg_idx, int64_t n,
 | 
						|
                              T* med_out) {
 | 
						|
  int index = threadIdx.x + blockDim.x * blockIdx.x;
 | 
						|
  if (index < n) {
 | 
						|
    med_out[trg_idx[index]] = in[index];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void Sort(int64_t axis_dim, int64_t groups, T* med_out,
 | 
						|
                     int64_t* med_ids) {
 | 
						|
  int index = threadIdx.x + blockDim.x * blockIdx.x;
 | 
						|
  if (index < groups) {
 | 
						|
    thrust::sort_by_key(thrust::device, med_out + index * axis_dim,
 | 
						|
                        med_out + axis_dim * (1 + index),
 | 
						|
                        med_ids + index * axis_dim);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void PermuteMediateData(const T* med_out, const int64_t* med_ids,
 | 
						|
                                   const int64_t* trg_idx, int64_t n, T* out,
 | 
						|
                                   int64_t* indices) {
 | 
						|
  int index = threadIdx.x + blockDim.x * blockIdx.x;
 | 
						|
  if (index < n) {
 | 
						|
    out[index] = med_out[trg_idx[index]];
 | 
						|
    indices[index] = med_ids[trg_idx[index]];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* input = ctx.Input<Tensor>("X");
 | 
						|
    auto* output = ctx.Output<Tensor>("Out");
 | 
						|
    auto* indices = ctx.Output<Tensor>("Indices");
 | 
						|
    int axis = ctx.Attr<int>("axis");
 | 
						|
 | 
						|
    auto in_dims = input->dims();
 | 
						|
    axis = (axis < 0) ? (in_dims.size() + axis) : axis;
 | 
						|
 | 
						|
    const T* in_data = input->data<T>();
 | 
						|
    T* out_data = output->mutable_data<T>(ctx.GetPlace());
 | 
						|
    int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
 | 
						|
 | 
						|
    int64_t numel = input->numel();
 | 
						|
    int64_t groups = numel / in_dims[axis];
 | 
						|
 | 
						|
    std::vector<int64_t> in_dims_vec = vectorize(in_dims);
 | 
						|
    thrust::device_vector<int64_t> in_dims_dev(in_dims_vec.begin(),
 | 
						|
                                               in_dims_vec.end());
 | 
						|
    int64_t* in_dims_data = thrust::raw_pointer_cast(in_dims_dev.data());
 | 
						|
    // Mediate tensor for sorting data and indices
 | 
						|
    Tensor mediate_output, mediate_indices;
 | 
						|
    T* med_out_data =
 | 
						|
        mediate_output.mutable_data<T>(input->dims(), ctx.GetPlace());
 | 
						|
    int64_t* med_ids_data =
 | 
						|
        mediate_indices.mutable_data<int64_t>(in_dims, ctx.GetPlace());
 | 
						|
    // Target index of each element along the given axis in the mediate tensors
 | 
						|
    Tensor trg_idx_t;
 | 
						|
    int64_t* trg_idx = trg_idx_t.mutable_data<int64_t>(in_dims, ctx.GetPlace());
 | 
						|
 | 
						|
    auto stream = ctx.cuda_device_context().stream();
 | 
						|
    const int num_threads = PADDLE_CUDA_NUM_THREADS;
 | 
						|
 | 
						|
    ComputeTargetIdx<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
 | 
						|
        in_dims_data, in_dims.size(), axis, numel, trg_idx, med_ids_data);
 | 
						|
 | 
						|
    PermuteInData<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
 | 
						|
        in_data, trg_idx, numel, med_out_data);
 | 
						|
 | 
						|
    Sort<<<(groups - 1) / num_threads + 1, num_threads, 0, stream>>>(
 | 
						|
        in_dims[axis], groups, med_out_data, med_ids_data);
 | 
						|
 | 
						|
    PermuteMediateData<<<(numel - 1) / num_threads + 1, num_threads, 0,
 | 
						|
                         stream>>>(med_out_data, med_ids_data, trg_idx, numel,
 | 
						|
                                   out_data, ids_data);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
REGISTER_OP_CUDA_KERNEL(argsort, paddle::operators::ArgsortOpCUDAKernel<float>,
 | 
						|
                        paddle::operators::ArgsortOpCUDAKernel<double>);
 |