You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dist_transpiler.py

355 lines
15 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
import traceback
class TranspilerTest(unittest.TestCase):
def setUp(self):
self.trainer_id = 0
self.trainers = 2
self.pservers = 2
# NOTE: we do not actually bind this port
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
self.pserver1_ep = "127.0.0.1:6174"
self.pserver2_ep = "127.0.0.1:6175"
self.sync_mode = True
self.transpiler = None
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
sgd_optimizer.minimize(avg_cost)
return
def get_main_program(self):
main = fluid.Program()
with fluid.program_guard(main):
self.net_conf()
self.origin_prog = main.clone()
return main
def get_trainer(self, config=None):
t = self._transpiler_instance(config)
return t.get_trainer_program()
def get_pserver(self, ep, config=None):
t = self._transpiler_instance(config)
pserver = t.get_pserver_program(ep)
startup = t.get_startup_program(ep, pserver)
return pserver, startup
def _transpiler_instance(self, config=None):
if not self.transpiler:
main = self.get_main_program()
self.transpiler = fluid.DistributeTranspiler(config=config)
self.transpiler.transpile(
self.trainer_id,
program=main,
pservers=self.pserver_eps,
trainers=self.trainers)
return self.transpiler
class TestBasicModel(TranspilerTest):
def test_transpiler(self):
pserver, startup = self.get_pserver(self.pserver1_ep)
pserver2, startup2 = self.get_pserver(self.pserver2_ep)
trainer = self.get_trainer()
self.assertEqual([op.type for op in trainer.global_block().ops], [
'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
])
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
# block1~2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "sgd"])
# confirm startup program
self.assertEqual([op.type for op in startup.global_block().ops],
["fill_constant", "fill_constant", "uniform_random"])
# the variable #fc_w will be split into two blocks
fc_w_var = startup.global_block().var("fc_w.block1")
self.assertEqual(fc_w_var.shape, (500, 1000))
# all parameters should be optimized on pserver
pserver_params = []
for prog in [pserver, pserver2]:
for blk in prog.blocks:
for op in blk.ops:
if "Param" in op.input_names:
param_name = op.input("Param")[0]
is_block_idx = param_name.find(".block")
if is_block_idx != -1:
origin_param_name = param_name[:is_block_idx]
else:
origin_param_name = param_name
pserver_params.append(origin_param_name)
trainer_params = []
for op in self.origin_prog.global_block().ops:
if "Param" in op.input_names:
trainer_params.append(op.input("Param")[0])
self.assertEqual(set(pserver_params), set(trainer_params))
class TestBasicModelWithLargeBlockSize(TranspilerTest):
def test_transpiler(self):
config = fluid.DistributeTranspilerConfig()
config.min_block_size = 1048576
pserver, startup = self.get_pserver(self.pserver1_ep, config)
pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)
trainer = self.get_trainer(config)
self.assertEqual([op.type for op in trainer.global_block().ops], [
'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
'recv', 'recv', 'fetch_barrier'
])
self.assertEqual(len(pserver.blocks), 2)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
# block1~2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "sgd"])
# confirm startup program
self.assertEqual([op.type for op in startup.global_block().ops],
["fill_constant", "fill_constant", "fill_constant"])
# the variable #fc_w will be split into two blocks
fc_w_var = startup2.global_block().var("fc_w")
self.assertEqual(fc_w_var.shape, (1000L, 1000L))
# all parameters should be optimized on pserver
pserver_params = []
for prog in [pserver, pserver2]:
for blk in prog.blocks:
for op in blk.ops:
if "Param" in op.input_names:
param_name = op.input("Param")[0]
is_block_idx = param_name.find(".block")
if is_block_idx != -1:
origin_param_name = param_name[:is_block_idx]
else:
origin_param_name = param_name
pserver_params.append(origin_param_name)
trainer_params = []
for op in self.origin_prog.global_block().ops:
if "Param" in op.input_names:
trainer_params.append(op.input("Param")[0])
self.assertEqual(set(pserver_params), set(trainer_params))
class TestNoSliceVar(TranspilerTest):
def setUp(self):
super(TestNoSliceVar, self).setUp()
def test_transpiler(self):
config = fluid.DistributeTranspilerConfig()
config.slice_var_up = False
_, startup = self.get_pserver(self.pserver1_ep, config)
_, startup2 = self.get_pserver(self.pserver2_ep, config)
if startup.global_block().vars.has_key("fc_w"):
fc_w_var = startup.global_block().vars["fc_w"]
elif startup2.global_block().vars.has_key("fc_w"):
fc_w_var = startup2.global_block().vars["fc_w"]
self.assertEqual(fc_w_var.shape, (1000, 1000))
class TestLRDecay(TranspilerTest):
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=1.0,
decay_steps=2100,
decay_rate=0.1,
staircase=True))
sgd_optimizer.minimize(avg_cost)
return
def test_transpiler(self):
pserver, startup = self.get_pserver(self.pserver1_ep)
trainer = self.get_trainer()
self.assertEqual(len(pserver.blocks), 4)
lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
self.assertEqual(lr_decay_ops, [
"increment", "cast", "fill_constant", "elementwise_div", "floor",
"fill_constant", "elementwise_pow", "fill_constant",
"elementwise_mul"
])
class TestLRDecayConditional(TranspilerTest):
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.piecewise_decay([10000, 20000],
[1.0, 0.5, 1.0]))
sgd_optimizer.minimize(avg_cost)
return
def test_transpiler(self):
pserver, startup = self.get_pserver(self.pserver1_ep)
trainer = self.get_trainer()
serv_op = pserver.blocks[0].ops[0]
sub_blocks = []
optimize_blocks = []
for b in serv_op.attrs["optimize_blocks"]:
optimize_blocks.append(b.idx)
for b in pserver.blocks:
if b.idx not in optimize_blocks:
sub_blocks.append(b.idx)
self.assertEqual(len(pserver.blocks), 7)
lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
self.assertEqual(lr_decay_ops, [
"increment", "cast", "fill_constant", "fill_constant", "less_than",
"logical_not", "conditional_block", "fill_constant",
"fill_constant", "less_than", "logical_not", "logical_and",
"logical_and", "conditional_block", "fill_constant",
"conditional_block"
])
# test the condition blocks
for b in sub_blocks:
if b == 0:
continue
block = pserver.blocks[b]
self.assertEqual([op.type for op in block.ops], ["assign"])
class TestL2Decay(TranspilerTest):
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(
input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(
name='fc_w',
regularizer=fluid.regularizer.L2Decay(),
gradient_clip=fluid.clip.GradientClipByValue(0.1)),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
sgd_optimizer.minimize(avg_cost)
return
def test_transpiler(self):
pserver, startup = self.get_pserver(self.pserver1_ep)
trainer = self.get_trainer()
self.assertEqual(len(pserver.blocks), 3)
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "clip", "sgd"])
self.assertEqual(
[op.type for op in pserver.blocks[2].ops],
["sum", "scale", "clip", "scale", "elementwise_add", "sgd"])
# TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer
class TestL2DecayWithPiecewise(TranspilerTest):
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
base_lr = 1.0
bd = [1, 10, 20, 30]
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
sgd_optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
sgd_optimizer.minimize(avg_cost)
return
def test_transpiler(self):
pserver, startup = self.get_pserver(self.pserver1_ep)
trainer = self.get_trainer()
self.assertEqual(len(pserver.blocks), 9)
self.assertEqual([op.type for op in pserver.blocks[1].ops], [
"increment", "cast", "fill_constant", "fill_constant", "less_than",
"logical_not", "conditional_block", "fill_constant",
"fill_constant", "less_than", "logical_not", "logical_and",
"logical_and", "conditional_block", "fill_constant",
"fill_constant", "less_than", "logical_not", "logical_and",
"logical_and", "conditional_block", "fill_constant",
"fill_constant", "less_than", "logical_not", "logical_and",
"logical_and", "conditional_block", "fill_constant",
"conditional_block"
])
self.assertEqual(
[op.type for op in pserver.blocks[7].ops],
["sum", "scale", "scale", "elementwise_add", "momentum"])
self.assertEqual(
[op.type for op in pserver.blocks[8].ops],
["sum", "scale", "scale", "elementwise_add", "momentum"])
if __name__ == "__main__":
unittest.main()