You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							136 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							136 lines
						
					
					
						
							4.7 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
#ifdef PADDLE_WITH_MKLDNN
 | 
						|
#include "paddle/fluid/platform/mkldnn_helper.h"
 | 
						|
#endif
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    float mean = context.Attr<float>("mean");
 | 
						|
    float std = context.Attr<float>("std");
 | 
						|
    auto* tensor = context.Output<framework::Tensor>("Out");
 | 
						|
    T* data = tensor->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
 | 
						|
    std::minstd_rand engine;
 | 
						|
    if (seed == 0) {
 | 
						|
      seed = std::random_device()();
 | 
						|
    }
 | 
						|
    engine.seed(seed);
 | 
						|
    std::normal_distribution<T> dist(mean, std);
 | 
						|
    int64_t size = tensor->numel();
 | 
						|
    for (int64_t i = 0; i < size; ++i) {
 | 
						|
      data[i] = dist(engine);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class GaussianRandomOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                   "Output(Out) of GaussianRandomOp should not be null.");
 | 
						|
    auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
 | 
						|
    std::vector<int64_t> temp;
 | 
						|
    temp.reserve(shape.size());
 | 
						|
    for (auto dim : shape) {
 | 
						|
      temp.push_back(static_cast<int64_t>(dim));
 | 
						|
    }
 | 
						|
    PADDLE_ENFORCE(shape.size() > 0UL,
 | 
						|
                   "shape can be one int or array. shape must be set.");
 | 
						|
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext& ctx) const override {
 | 
						|
    framework::LibraryType library{framework::LibraryType::kPlain};
 | 
						|
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};
 | 
						|
 | 
						|
#ifdef PADDLE_WITH_MKLDNN
 | 
						|
    if (library == framework::LibraryType::kPlain &&
 | 
						|
        platform::CanMKLDNNBeUsed(ctx)) {
 | 
						|
      library = framework::LibraryType::kMKLDNN;
 | 
						|
      layout = framework::DataLayout::kMKLDNN;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return framework::OpKernelType(
 | 
						|
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
 | 
						|
        ctx.device_context(), layout, library);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddOutput("Out", "Output matrix of gaussian random op");
 | 
						|
 | 
						|
    AddAttr<std::vector<int>>("shape",
 | 
						|
                              "(vector<int>) "
 | 
						|
                              "The dimension of random tensor.");
 | 
						|
    AddAttr<float>("mean",
 | 
						|
                   "(float, default 0.0) "
 | 
						|
                   "mean of random tensor.")
 | 
						|
        .SetDefault(.0f);
 | 
						|
    AddAttr<float>("std",
 | 
						|
                   "(float, default 1.0) "
 | 
						|
                   "std of random tensor.")
 | 
						|
        .SetDefault(1.0f);
 | 
						|
    AddAttr<int>("seed",
 | 
						|
                 "(int, default 0) "
 | 
						|
                 "Random seed of generator."
 | 
						|
                 "0 means use system wide seed."
 | 
						|
                 "Note that if seed is not 0, this operator will always "
 | 
						|
                 "generate the same random numbers every time.")
 | 
						|
        .SetDefault(0);
 | 
						|
    AddAttr<int>("dtype",
 | 
						|
                 "(int, default 5(FP32)) "
 | 
						|
                 "Output data type.")
 | 
						|
        .SetDefault(framework::proto::VarType::FP32);
 | 
						|
    AddAttr<bool>("use_mkldnn",
 | 
						|
                  "(bool, default false) Only used in mkldnn kernel")
 | 
						|
        .SetDefault(false);
 | 
						|
    AddComment(R"DOC(
 | 
						|
GaussianRandom Operator.
 | 
						|
 | 
						|
Used to initialize tensors with gaussian random generator.
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
 | 
						|
                             ops::GaussianRandomOpMaker);
 | 
						|
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
 | 
						|
                       ops::CPUGaussianRandomKernel<double>);
 | 
						|
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
 | 
						|
                       ops::CPUGaussianRandomKernel<float>,
 | 
						|
                       ops::CPUGaussianRandomKernel<double>);
 |