You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
7.0 KiB
204 lines
7.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/math/jit_kernel.h"
|
|
#include <functional>
|
|
#include <string>
|
|
#include "paddle/fluid/operators/math/cpu_vec.h"
|
|
|
|
#ifdef PADDLE_WITH_MKLML
|
|
#include "paddle/fluid/platform/dynload/mklml.h"
|
|
#endif
|
|
|
|
#ifdef __AVX__
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
namespace jitkernel {
|
|
|
|
namespace jit = platform::jit;
|
|
|
|
KernelPool& KernelPool::Instance() {
|
|
static KernelPool g_jit_kernels;
|
|
return g_jit_kernels;
|
|
}
|
|
#define SEARCH_BLOCK(src, t, isa) \
|
|
if (d < AVX_FLOAT_BLOCK) { \
|
|
Compute = src<t, isa, kLT8>; \
|
|
} else if (d == AVX_FLOAT_BLOCK) { \
|
|
Compute = src<t, isa, kEQ8>; \
|
|
} else if (d == AVX512_FLOAT_BLOCK) { \
|
|
Compute = src<t, isa, kEQ16>; \
|
|
} else { \
|
|
Compute = src<t, isa, kGT16>; \
|
|
}
|
|
|
|
#define SEARCH_ISA_BLOCK(src, t) \
|
|
if (jit::MayIUse(jit::avx512_common)) { \
|
|
SEARCH_BLOCK(src, t, jit::avx512_common); \
|
|
} else if (jit::MayIUse(jit::avx2)) { \
|
|
SEARCH_BLOCK(src, t, jit::avx2); \
|
|
} else if (jit::MayIUse(jit::avx)) { \
|
|
SEARCH_BLOCK(src, t, jit::avx); \
|
|
} else { \
|
|
SEARCH_BLOCK(src, t, jit::isa_any); \
|
|
}
|
|
|
|
#define FOR_EACH_BLOCK(macro_, isa) \
|
|
macro_(isa, kLT8) macro_(isa, kEQ8) macro_(isa, kEQ16) macro_(isa, kGT16)
|
|
|
|
#define FOR_EACH_ISA_BLOCK(macro_) \
|
|
FOR_EACH_BLOCK(macro_, jit::avx512_common) \
|
|
FOR_EACH_BLOCK(macro_, jit::avx2) \
|
|
FOR_EACH_BLOCK(macro_, jit::avx) \
|
|
FOR_EACH_BLOCK(macro_, jit::any)
|
|
|
|
#define VMUL_ANY \
|
|
for (int i = 0; i < n; ++i) { \
|
|
z[i] = x[i] * y[i]; \
|
|
}
|
|
|
|
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
|
|
static void VMulCompute(const int n, const T* x, const T* y, T* z) {
|
|
VMUL_ANY
|
|
}
|
|
|
|
#ifdef PADDLE_USE_MKLML
|
|
#define DEFINE_VMUL_COMPUTE_FLOAT(isa, block) \
|
|
template <> \
|
|
static void VMulCompute<float, isa, block>(const int n, const float* x, \
|
|
const float* y, float* z) { \
|
|
platform::dynload::vsMul(n, x, y, z); \
|
|
}
|
|
|
|
#define DEFINE_VMUL_COMPUTE_DOUBLE(isa, block) \
|
|
template <> \
|
|
static void VMulCompute<double, isa, block>(const int n, const double* x, \
|
|
const double* y, float* z) { \
|
|
platform::dynload::vdMul(n, x, y, z); \
|
|
}
|
|
|
|
FOR_EACH_ISA_BLOCK(DEFINE_VMUL_COMPUTE_FLOAT)
|
|
FOR_EACH_ISA_BLOCK(DEFINE_VMUL_COMPUTE_DOUBLE)
|
|
// TODO(TJ): add EQ8
|
|
#endif
|
|
|
|
#undef DEFINE_VMUL_COMPUTE_FLOAT
|
|
#undef DEFINE_VMUL_COMPUTE_DOUBLE
|
|
#undef VMUL_ANY
|
|
|
|
template <>
|
|
VMulKernel<float>::VMulKernel(int d) {
|
|
SEARCH_ISA_BLOCK(VMulCompute, float);
|
|
}
|
|
|
|
template <>
|
|
VMulKernel<double>::VMulKernel(int d) {
|
|
SEARCH_ISA_BLOCK(VMulCompute, double);
|
|
}
|
|
|
|
template <>
|
|
const std::shared_ptr<VMulKernel<float>> KernelPool::Get<VMulKernel<float>>(
|
|
int d) {
|
|
std::string key = "f" + std::to_string(d);
|
|
if (kers_.find(key) == kers_.end()) {
|
|
auto p = std::make_shared<VMulKernel<float>>(d);
|
|
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
|
|
return p;
|
|
}
|
|
return std::dynamic_pointer_cast<VMulKernel<float>>(kers_.at(key));
|
|
}
|
|
|
|
template <>
|
|
const std::shared_ptr<VMulKernel<double>> KernelPool::Get<VMulKernel<double>>(
|
|
int d) {
|
|
std::string key = "d" + std::to_string(d);
|
|
if (kers_.find(key) == kers_.end()) {
|
|
auto p = std::make_shared<VMulKernel<double>>(d);
|
|
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
|
|
return p;
|
|
}
|
|
return std::dynamic_pointer_cast<VMulKernel<double>>(kers_.at(key));
|
|
}
|
|
|
|
template <>
|
|
LSTMKernel<float>::LSTMKernel(int d, const std::string& act_gate_str,
|
|
const std::string& act_cand_str,
|
|
const std::string& act_cell_str)
|
|
: Kernel(), d_(d) {
|
|
d2_ = d * 2;
|
|
d3_ = d * 3;
|
|
if (platform::jit::MayIUse(platform::jit::avx512_common)) {
|
|
math::VecActivations<float, platform::jit::avx512_common> act_functor;
|
|
act_gate_ = act_functor(act_gate_str);
|
|
act_cell_ = act_functor(act_cell_str);
|
|
act_cand_ = act_functor(act_cand_str);
|
|
} else if (platform::jit::MayIUse(platform::jit::avx2)) {
|
|
math::VecActivations<float, platform::jit::avx2> act_functor;
|
|
act_gate_ = act_functor(act_gate_str);
|
|
act_cell_ = act_functor(act_cell_str);
|
|
act_cand_ = act_functor(act_cand_str);
|
|
} else if (platform::jit::MayIUse(platform::jit::avx)) {
|
|
math::VecActivations<float, platform::jit::avx> act_functor;
|
|
act_gate_ = act_functor(act_gate_str);
|
|
act_cell_ = act_functor(act_cell_str);
|
|
act_cand_ = act_functor(act_cand_str);
|
|
// ComputeCtHt = [&](float*gates,const float*ct_1,float*ct, float*ht) {
|
|
// // gates: W_ch, W_ih, W_fh, W_oh
|
|
// act_gate(d3_, gates + d_, gates + d_);
|
|
|
|
// /* C_t = C_t-1 * fgated + cand_gated * igated */
|
|
// act_cand(d_, gates, gates);
|
|
// blas.VMUL(d_, gates, gates + d_, gates + d_);
|
|
// blas.VMUL(d_, ct_1, gates + d2_, gates + d2_);
|
|
// blas.VADD(d_, gates + d_, gates + d2_, ct);
|
|
|
|
// /* H_t = act_cell(C_t) * ogated */
|
|
// act_cell(d_, ct, gates + d2_);
|
|
// blas.VMUL(d_, gates + d2_, gates + d3_, ht)
|
|
// GET_Ct(ct_1, gates, ct);
|
|
// GET_Ht(ct, gates, ht);
|
|
// };
|
|
} else {
|
|
math::VecActivations<float, platform::jit::isa_any> act_functor;
|
|
act_gate_ = act_functor(act_gate_str);
|
|
act_cell_ = act_functor(act_cell_str);
|
|
act_cand_ = act_functor(act_cand_str);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
const std::shared_ptr<LSTMKernel<float>>
|
|
KernelPool::Get<LSTMKernel<float>, int, const std::string&, const std::string&,
|
|
const std::string&>(int d, const std::string& act_gate,
|
|
const std::string& act_cand,
|
|
const std::string& act_cell) {
|
|
std::string key = "f" + std::to_string(d) + act_gate + act_cand + act_cell;
|
|
if (kers_.find(key) == kers_.end()) {
|
|
auto p =
|
|
std::make_shared<LSTMKernel<float>>(d, act_gate, act_cand, act_cell);
|
|
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
|
|
return p;
|
|
}
|
|
return std::dynamic_pointer_cast<LSTMKernel<float>>(kers_.at(key));
|
|
}
|
|
|
|
} // namespace jitkernel
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|