You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
5.3 KiB
181 lines
5.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
from ..layer_helper import LayerHelper, unique_name
|
|
from ..framework import Variable
|
|
|
|
|
|
def _allreduce(x, out=None, reduce_type="sum", sync_mode=False):
|
|
helper = LayerHelper("allreduce", **locals())
|
|
# Convert string reduce type to op int type
|
|
red_typ_int = 0
|
|
if reduce_type == "sum":
|
|
red_typ_int = 0
|
|
elif reduce_type == "prod":
|
|
red_typ_int = 1
|
|
elif reduce_type == "max":
|
|
red_typ_int = 2
|
|
elif reduce_type == "min":
|
|
red_typ_int = 3
|
|
else:
|
|
raise TypeError("reduce type can only be [sum|prod|max|min]")
|
|
|
|
if out is None:
|
|
out = helper.create_variable(
|
|
name=unique_name.generate_with_ignorable_key(".".join(
|
|
[x.name, 'tmp'])),
|
|
shape=x.shape,
|
|
dtype=x.dtype,
|
|
type=x.type,
|
|
persistable=x.persistable,
|
|
stop_gradient=True)
|
|
helper.append_op(
|
|
type='allreduce',
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [out]},
|
|
attrs={"reduce_type": red_typ_int,
|
|
"sync_mode": sync_mode})
|
|
return out
|
|
|
|
|
|
def _broadcast(x, root, sync_mode=False):
|
|
helper = LayerHelper("broadcast", **locals())
|
|
helper.append_op(
|
|
type='broadcast',
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [x]},
|
|
attrs={"sync_mode": sync_mode,
|
|
"root": root})
|
|
return x
|
|
|
|
|
|
def _c_allreduce(x,
|
|
out=None,
|
|
reduce_type='sum',
|
|
ring_id=0,
|
|
use_calc_stream=False):
|
|
helper = LayerHelper('c_allreduce', **locals())
|
|
|
|
if reduce_type not in ['sum', 'prob', 'max', 'min']:
|
|
raise TypeError('reduce type can only be "sum|prod|max|min]"')
|
|
|
|
op_type = 'c_allreduce_' + reduce_type
|
|
if out is None:
|
|
out = helper.create_variable(
|
|
name=unique_name.generate_with_ignorable_key('.'.join(
|
|
[x.name, op_type])),
|
|
shape=x.shape,
|
|
dtype=x.dtype,
|
|
type=x.type,
|
|
persistable=x.persistable)
|
|
|
|
helper.append_op(
|
|
type=op_type,
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [out]},
|
|
attrs={'ring_id': ring_id,
|
|
'use_calc_stream': use_calc_stream})
|
|
return out
|
|
|
|
|
|
def _c_broadcast(x, root=0, ring_id=0, use_calc_stream=False):
|
|
op_type = 'c_broadcast'
|
|
helper = LayerHelper(op_type, **locals())
|
|
helper.append_op(
|
|
type=op_type,
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [x]},
|
|
attrs={
|
|
'root': root,
|
|
'ring_id': ring_id,
|
|
'use_calc_stream': use_calc_stream
|
|
})
|
|
return x
|
|
|
|
|
|
def _c_allgather(x, nranks, ring_id=0, use_calc_stream=False):
|
|
op_type = 'c_allgather'
|
|
helper = LayerHelper(op_type, **locals())
|
|
out_shape = list(x.shape[:])
|
|
if out_shape[0] > 0:
|
|
out_shape[0] *= nranks
|
|
out = helper.create_variable(
|
|
name=unique_name.generate_with_ignorable_key('.'.join(
|
|
[x.name, op_type])),
|
|
shape=out_shape,
|
|
dtype=x.dtype,
|
|
type=x.type,
|
|
persistable=x.persistable)
|
|
helper.append_op(
|
|
type=op_type,
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [out]},
|
|
attrs={
|
|
'nranks': nranks,
|
|
'ring_id': ring_id,
|
|
'use_calc_stream': use_calc_stream
|
|
})
|
|
return out
|
|
|
|
|
|
def _c_reducescatter(x, nranks, ring_id=0, use_calc_stream=False):
|
|
if not isinstance(x, Variable):
|
|
raise TypeError('x must be a Variable')
|
|
|
|
if x.shape[0] > 0 and x.shape[0] % nranks != 0:
|
|
raise ValueError('x.shape[0](%d) cannot be evenly divided by nranks(%d)'
|
|
% (x.shape[0], nranks))
|
|
|
|
op_type = 'c_reducescatter'
|
|
helper = LayerHelper(op_type, **locals())
|
|
out_shape = list(x.shape[:])
|
|
if out_shape[0] > 0:
|
|
out_shape[0] //= nranks
|
|
out = helper.create_variable(
|
|
name=unique_name.generate_with_ignorable_key('.'.join(
|
|
[x.name, op_type])),
|
|
shape=out_shape,
|
|
dtype=x.dtype,
|
|
type=x.type,
|
|
persistable=x.persistable)
|
|
helper.append_op(
|
|
type=op_type,
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [out]},
|
|
attrs={
|
|
'nranks': nranks,
|
|
'ring_id': ring_id,
|
|
'use_calc_stream': use_calc_stream
|
|
})
|
|
return out
|
|
|
|
|
|
def _c_sync_calc_stream(x):
|
|
op_type = 'c_sync_calc_stream'
|
|
helper = LayerHelper(op_type, **locals())
|
|
helper.append_op(type=op_type, inputs={'X': [x]}, outputs={'Out': [x]})
|
|
return x
|
|
|
|
|
|
def _c_sync_comm_stream(x, ring_id):
|
|
op_type = 'c_sync_comm_stream'
|
|
helper = LayerHelper(op_type, **locals())
|
|
helper.append_op(
|
|
type=op_type,
|
|
inputs={'X': [x]},
|
|
outputs={'Out': [x]},
|
|
attrs={'ring_id': ring_id})
|
|
return x
|