You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							109 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							109 lines
						
					
					
						
							3.8 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class CPUDropoutKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* x = context.Input<Tensor>("X");
 | 
						|
    auto* y = context.Output<Tensor>("Out");
 | 
						|
    const auto* x_data = x->data<T>();
 | 
						|
    auto* y_data = y->mutable_data<T>(context.GetPlace());
 | 
						|
    float dropout_prob = context.Attr<float>("dropout_prob");
 | 
						|
 | 
						|
    auto dropout_implementation =
 | 
						|
        context.Attr<std::string>("dropout_implementation");
 | 
						|
    if (!context.Attr<bool>("is_test")) {
 | 
						|
      auto* mask = context.Output<Tensor>("Mask");
 | 
						|
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
      // NOTE: fixed seed should only be used in unittest or for debug.
 | 
						|
      // Guarantee to use random seed in training.
 | 
						|
      std::random_device rnd;
 | 
						|
      std::minstd_rand engine;
 | 
						|
      int seed =
 | 
						|
          context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
 | 
						|
      engine.seed(seed);
 | 
						|
 | 
						|
      std::uniform_real_distribution<float> dist(0, 1);
 | 
						|
 | 
						|
      size_t size = framework::product(mask->dims());
 | 
						|
      for (size_t i = 0; i < size; ++i) {
 | 
						|
        if (dist(engine) < dropout_prob) {
 | 
						|
          mask_data[i] = 0;
 | 
						|
          y_data[i] = 0;
 | 
						|
        } else {
 | 
						|
          if (dropout_implementation == "upscale_in_train") {
 | 
						|
            mask_data[i] = 1.0f / static_cast<T>(1.0f - dropout_prob);
 | 
						|
            y_data[i] = x_data[i] / static_cast<T>(1.0f - dropout_prob);
 | 
						|
          } else {
 | 
						|
            mask_data[i] = 1;
 | 
						|
            y_data[i] = x_data[i];
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      auto X = EigenMatrix<T>::Reshape(*x, 1);
 | 
						|
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
 | 
						|
      auto& place =
 | 
						|
          *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
      if (dropout_implementation == "upscale_in_train") {
 | 
						|
        Y.device(place) = X;
 | 
						|
      } else {
 | 
						|
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class DropoutGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
 | 
						|
                   "GradOp is only callable when is_test is false");
 | 
						|
 | 
						|
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
 | 
						|
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* mask = context.Input<Tensor>("Mask");
 | 
						|
    grad_x->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    auto M = EigenMatrix<T>::Reshape(*mask, 1);
 | 
						|
    auto dX = EigenMatrix<T>::Reshape(*grad_x, 1);
 | 
						|
    auto dY = EigenMatrix<T>::Reshape(*grad_y, 1);
 | 
						|
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
    dX.device(place) = dY * M;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |