You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							133 lines
						
					
					
						
							5.4 KiB
						
					
					
				
			
		
		
	
	
							133 lines
						
					
					
						
							5.4 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/platform/cudnn_helper.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using framework::Tensor;
 | 
						|
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
 | 
						|
using DataLayout = platform::DataLayout;
 | 
						|
using ScopedSpatialTransformerDescriptor =
 | 
						|
    platform::ScopedSpatialTransformerDescriptor;
 | 
						|
template <typename T>
 | 
						|
using CudnnDataType = platform::CudnnDataType<T>;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | 
						|
                   "It must use CUDAPlace");
 | 
						|
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | 
						|
    auto handle = dev_ctx.cudnn_handle();
 | 
						|
    auto* input = ctx.Input<Tensor>("X");
 | 
						|
    auto* grid = ctx.Input<Tensor>("Grid");
 | 
						|
    auto* output = ctx.Output<Tensor>("Output");
 | 
						|
 | 
						|
    int n = input->dims()[0];
 | 
						|
    int c = input->dims()[1];
 | 
						|
    int h = input->dims()[2];
 | 
						|
    int w = input->dims()[3];
 | 
						|
    const int size[4] = {n, c, h, w};
 | 
						|
 | 
						|
    const T* input_data = input->data<T>();
 | 
						|
    const T* grid_data = grid->data<T>();
 | 
						|
    T* output_data = output->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
 | 
						|
 | 
						|
    ScopedSpatialTransformerDescriptor st_desc;
 | 
						|
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
 | 
						|
        st_desc.descriptor<T>(4, size);
 | 
						|
 | 
						|
    ScopedTensorDescriptor input_desc;
 | 
						|
    ScopedTensorDescriptor output_desc;
 | 
						|
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | 
						|
        DataLayout::kNCHW, framework::vectorize2int(input->dims()));
 | 
						|
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
 | 
						|
        DataLayout::kNCHW, framework::vectorize2int(output->dims()));
 | 
						|
 | 
						|
    CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerForward(
 | 
						|
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
 | 
						|
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
 | 
						|
        output_data));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | 
						|
                   "It must use CUDAPlace");
 | 
						|
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | 
						|
    auto handle = dev_ctx.cudnn_handle();
 | 
						|
    auto* input = ctx.Input<Tensor>("X");
 | 
						|
    auto* grid = ctx.Input<Tensor>("Grid");
 | 
						|
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
 | 
						|
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
 | 
						|
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
 | 
						|
 | 
						|
    auto output_grad_dims = output_grad->dims();
 | 
						|
    const int n = output_grad_dims[0];
 | 
						|
    const int c = output_grad_dims[1];
 | 
						|
    const int h = output_grad_dims[2];
 | 
						|
    const int w = output_grad_dims[3];
 | 
						|
    const int size[4] = {n, c, h, w};
 | 
						|
 | 
						|
    ScopedSpatialTransformerDescriptor st_dest;
 | 
						|
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
 | 
						|
        st_dest.descriptor<T>(4, size);
 | 
						|
 | 
						|
    const T* input_data = input->data<T>();
 | 
						|
    const T* grid_data = grid->data<T>();
 | 
						|
    const T* output_grad_data = output_grad->data<T>();
 | 
						|
    T* input_grad_data =
 | 
						|
        input_grad->mutable_data<T>(output_grad_dims, ctx.GetPlace());
 | 
						|
    T* grid_grad_data =
 | 
						|
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
 | 
						|
 | 
						|
    ScopedTensorDescriptor input_desc;
 | 
						|
    ScopedTensorDescriptor input_grad_desc;
 | 
						|
    ScopedTensorDescriptor output_grad_desc;
 | 
						|
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | 
						|
        DataLayout::kNCHW, framework::vectorize2int(input->dims()));
 | 
						|
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
 | 
						|
        input_grad_desc.descriptor<T>(
 | 
						|
            DataLayout::kNCHW, framework::vectorize2int(input_grad->dims()));
 | 
						|
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
 | 
						|
        output_grad_desc.descriptor<T>(
 | 
						|
            DataLayout::kNCHW, framework::vectorize2int(output_grad->dims()));
 | 
						|
 | 
						|
    CUDNN_ENFORCE(platform::dynload::cudnnSpatialTfSamplerBackward(
 | 
						|
        handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
 | 
						|
        input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
 | 
						|
        input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
 | 
						|
        output_grad_data, grid_data, CudnnDataType<T>::kZero(),
 | 
						|
        grid_grad_data));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace plat = paddle::platform;
 | 
						|
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
 | 
						|
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
 | 
						|
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
 | 
						|
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
 | 
						|
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
 | 
						|
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);
 |