You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							67 lines
						
					
					
						
							2.4 KiB
						
					
					
				
			
		
		
	
	
							67 lines
						
					
					
						
							2.4 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class MeanKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* input = context.Input<Tensor>("X");
 | 
						|
    auto* output = context.Output<Tensor>("Out");
 | 
						|
 | 
						|
    output->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    auto X = EigenVector<T>::Flatten(*input);
 | 
						|
    auto y = EigenScalar<T>::From(*output);
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    y.device(place) = X.mean();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class MeanGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
 | 
						|
    PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar");
 | 
						|
    auto IG = context.Output<Tensor>(framework::GradVarName("X"));
 | 
						|
    IG->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    T ig_size = static_cast<T>(IG->numel());
 | 
						|
    Eigen::DSizes<int, 1> bcast(static_cast<int>(ig_size));
 | 
						|
    EigenVector<T>::Flatten(*IG).device(
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device()) =
 | 
						|
        (EigenVector<T>::From(*OG) / ig_size).broadcast(bcast);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |