You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							199 lines
						
					
					
						
							7.6 KiB
						
					
					
				
			
		
		
	
	
							199 lines
						
					
					
						
							7.6 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/mul_op.h"
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using framework::OpKernelType;
 | 
						|
using framework::Tensor;
 | 
						|
 | 
						|
class MulOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                   "Output(Out) of MulOp should not be null.");
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
 | 
						|
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
 | 
						|
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
 | 
						|
 | 
						|
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
 | 
						|
            << " x_num_col_dims=" << x_num_col_dims
 | 
						|
            << " y_num_col_dims=" << y_num_col_dims;
 | 
						|
 | 
						|
    PADDLE_ENFORCE_GT(
 | 
						|
        x_dims.size(), x_num_col_dims,
 | 
						|
        "The input tensor X's rank of MulOp should be larger than "
 | 
						|
        "x_num_col_dims.");
 | 
						|
    PADDLE_ENFORCE_GT(
 | 
						|
        y_dims.size(), y_num_col_dims,
 | 
						|
        "The input tensor Y's rank of MulOp should be larger than "
 | 
						|
        "y_num_col_dims.");
 | 
						|
 | 
						|
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
 | 
						|
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0],
 | 
						|
                      "First matrix's width must be equal with second matrix's "
 | 
						|
                      "height. %s, %s",
 | 
						|
                      x_mat_dims[1], y_mat_dims[0]);
 | 
						|
    std::vector<int64_t> output_dims;
 | 
						|
    output_dims.reserve(
 | 
						|
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));
 | 
						|
 | 
						|
    for (int i = 0; i < x_num_col_dims; ++i) {
 | 
						|
      output_dims.push_back(x_dims[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
 | 
						|
      output_dims.push_back(y_dims[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
 | 
						|
    ctx->ShareLoD("X", /*->*/ "Out");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor), The first input tensor of mul op.");
 | 
						|
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
 | 
						|
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
 | 
						|
    AddAttr<int>(
 | 
						|
        "x_num_col_dims",
 | 
						|
        R"DOC((int, default 1), The mul_op can take tensors with more than two
 | 
						|
              dimensions as its inputs. If the input $X$ is a tensor with more
 | 
						|
              than two dimensions, $X$ will be flattened into a two-dimensional
 | 
						|
              matrix first. The flattening rule is: the first `num_col_dims`
 | 
						|
              will be flattened to form the first dimension of the final matrix
 | 
						|
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
 | 
						|
              dimensions are flattened to form the second dimension of the final
 | 
						|
              matrix (the width of the matrix). As a result, height of the
 | 
						|
              flattened matrix is equal to the product of $X$'s first
 | 
						|
              `x_num_col_dims` dimensions' sizes, and width of the flattened
 | 
						|
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
 | 
						|
              dimensions' size. For example, suppose $X$ is a 6-dimensional
 | 
						|
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
 | 
						|
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
 | 
						|
              [24, 30].
 | 
						|
        )DOC")
 | 
						|
        .SetDefault(1)
 | 
						|
        .EqualGreaterThan(1);
 | 
						|
    AddAttr<int>(
 | 
						|
        "y_num_col_dims",
 | 
						|
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
 | 
						|
              dimensions as its inputs. If the input $Y$ is a tensor with more
 | 
						|
              than two dimensions, $Y$ will be flattened into a two-dimensional
 | 
						|
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
 | 
						|
              flattened. See comments of `x_num_col_dims` for more details.
 | 
						|
        )DOC")
 | 
						|
        .SetDefault(1)
 | 
						|
        .EqualGreaterThan(1);
 | 
						|
    AddComment(R"DOC(
 | 
						|
Mul Operator.
 | 
						|
 | 
						|
This operator is used to perform matrix multiplication for input $X$ and $Y$.
 | 
						|
 | 
						|
The equation is:
 | 
						|
 | 
						|
$$Out = X * Y$$
 | 
						|
 | 
						|
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
 | 
						|
or not. But the output only shares the LoD information with input $X$.
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 | 
						|
 protected:
 | 
						|
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
 | 
						|
      const override {
 | 
						|
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class MulGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) should not be null");
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
 | 
						|
 | 
						|
    auto x_mat_dims = framework::flatten_to_2d(
 | 
						|
        x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
 | 
						|
    auto y_mat_dims = framework::flatten_to_2d(
 | 
						|
        y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
 | 
						|
 | 
						|
    auto x_grad_name = framework::GradVarName("X");
 | 
						|
    auto y_grad_name = framework::GradVarName("Y");
 | 
						|
 | 
						|
    if (ctx->HasOutput(x_grad_name)) {
 | 
						|
      ctx->SetOutputDim(x_grad_name, x_dims);
 | 
						|
    }
 | 
						|
    if (ctx->HasOutput(y_grad_name)) {
 | 
						|
      ctx->SetOutputDim(y_grad_name, y_dims);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | 
						|
 | 
						|
 protected:
 | 
						|
  std::unique_ptr<framework::OpDesc> Apply() const override {
 | 
						|
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
 | 
						|
    retv->SetType("mul_grad");
 | 
						|
    retv->SetInput("X", Input("X"));
 | 
						|
    retv->SetInput("Y", Input("Y"));
 | 
						|
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
 | 
						|
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
 | 
						|
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
 | 
						|
    retv->SetAttrMap(Attrs());
 | 
						|
    return retv;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
 | 
						|
                  ops::MulOpGradMaker);
 | 
						|
REGISTER_OPERATOR(mul_grad, ops::MulGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
 |