You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							133 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							133 lines
						
					
					
						
							4.7 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
Indicesou may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/math/math_function.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n,
 | 
						|
                    int* post) {
 | 
						|
  *pre = 1;
 | 
						|
  *post = 1;
 | 
						|
  *n = dim[axis];
 | 
						|
  for (int i = 0; i < axis; ++i) {
 | 
						|
    (*pre) *= dim[i];
 | 
						|
  }
 | 
						|
  for (int i = axis + 1; i < dim.size(); ++i) {
 | 
						|
    (*post) *= dim[i];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class NormKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in_x = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* out_y = ctx.Output<framework::Tensor>("Out");
 | 
						|
    auto* out_norm = ctx.Output<framework::Tensor>("Norm");
 | 
						|
    out_y->mutable_data<T>(ctx.GetPlace());
 | 
						|
    out_norm->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto xdim = in_x->dims();
 | 
						|
    auto ndim = out_norm->dims();
 | 
						|
    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
 | 
						|
    int axis = ctx.Attr<int>("axis");
 | 
						|
    if (axis < 0) axis = xdim.size() + axis;
 | 
						|
    int pre, n, post;
 | 
						|
    GetDims(xdim, axis, &pre, &n, &post);
 | 
						|
 | 
						|
    auto* place = ctx.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    Eigen::DSizes<int, 3> shape(pre, n, post);
 | 
						|
    Eigen::DSizes<int, 2> norm_shape(pre, post);
 | 
						|
 | 
						|
    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
 | 
						|
    auto y_e = framework::EigenVector<T>::Flatten(*out_y);
 | 
						|
    auto norm_e = framework::EigenVector<T>::Flatten(*out_norm);
 | 
						|
    auto x = x_e.reshape(shape);
 | 
						|
    auto y = y_e.reshape(shape);
 | 
						|
    auto norm = norm_e.reshape(norm_shape);
 | 
						|
 | 
						|
    Eigen::DSizes<int, 1> rdim(1);
 | 
						|
    // y = x / sqrt((sum(x * x) + epsilon))
 | 
						|
    // norm = sqrt(sum(x * x) + epsilon)
 | 
						|
    auto x2 = x * x;
 | 
						|
    auto sum = x2.sum(rdim) + eps;
 | 
						|
    norm.device(*place) = sum.sqrt();
 | 
						|
 | 
						|
    // y = x / norm
 | 
						|
    Eigen::DSizes<int, 3> rshape(pre, 1, post);
 | 
						|
    Eigen::DSizes<int, 3> bcast(1, n, 1);
 | 
						|
    y.device(*place) = x / norm.reshape(rshape).broadcast(bcast);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T, typename AttrType = T>
 | 
						|
class NormGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in_x = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* in_norm = ctx.Input<framework::Tensor>("Norm");
 | 
						|
    auto* in_dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
						|
    out_dx->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto xdim = in_x->dims();
 | 
						|
    int axis = ctx.Attr<int>("axis");
 | 
						|
    if (axis < 0) axis = xdim.size() + axis;
 | 
						|
    int pre, n, post;
 | 
						|
    GetDims(xdim, axis, &pre, &n, &post);
 | 
						|
 | 
						|
    auto* place = ctx.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
 | 
						|
    auto dy_e = framework::EigenVector<T>::Flatten(*in_dy);
 | 
						|
    auto norm_e = framework::EigenVector<T>::Flatten(*in_norm);
 | 
						|
    auto dx_e = framework::EigenVector<T>::Flatten(*out_dx);
 | 
						|
 | 
						|
    Eigen::DSizes<int, 3> shape(pre, n, post);
 | 
						|
    Eigen::DSizes<int, 2> norm_shape(pre, post);
 | 
						|
    auto x = x_e.reshape(shape);
 | 
						|
    auto dy = dy_e.reshape(shape);
 | 
						|
    auto norm = norm_e.reshape(norm_shape);
 | 
						|
    auto dx = dx_e.reshape(shape);
 | 
						|
 | 
						|
    framework::Tensor rsum;
 | 
						|
    rsum.mutable_data<T>({pre, post}, ctx.GetPlace());
 | 
						|
    auto sum = framework::EigenTensor<T, 2>::From(rsum);
 | 
						|
 | 
						|
    Eigen::DSizes<int, 1> rdim(1);
 | 
						|
    Eigen::DSizes<int, 3> bcast(1, n, 1);
 | 
						|
    Eigen::DSizes<int, 3> rshape(pre, 1, post);
 | 
						|
 | 
						|
    // dx = ( dy/sqrt(sum(x*x)) ) * [1 - x*sum(x) / (sum(x*x) + e)]
 | 
						|
    //    = [dy - dy * x * sum(x) / (sum(x*x) + e)] / sqrt(sum(x*x))
 | 
						|
    //    = [dy - x * sum(x*dy) / (sum(x*x) + e)] / sqrt(sum(x*x))
 | 
						|
    // 1. sum = sum(x*dy)
 | 
						|
    sum.device(*place) = (x * dy).sum(rdim);
 | 
						|
    // 2. dx = x * sum
 | 
						|
    dx.device(*place) = sum.reshape(rshape).broadcast(bcast) * x;
 | 
						|
    // 3. dx / (sum(x*x) + e)
 | 
						|
    // where, norm.pow(2) = sum(x*x) + e, which is calculated in forward.
 | 
						|
    dx.device(*place) = dx / norm.pow(2).broadcast(bcast);
 | 
						|
    // 4. [dy - dx] / sqrt(sum(x*x))
 | 
						|
    dx.device(*place) = (dy - dx) / norm.broadcast(bcast);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |