You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							164 lines
						
					
					
						
							6.1 KiB
						
					
					
				
			
		
		
	
	
							164 lines
						
					
					
						
							6.1 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/smooth_l1_loss_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class SmoothL1LossOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null.");
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
    PADDLE_ENFORCE_EQ(x_dims, y_dims);
 | 
						|
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
 | 
						|
                      "The tensor rank of Input(X) should not be less than 2.");
 | 
						|
    if (ctx->HasInput("InsideWeight")) {
 | 
						|
      PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
 | 
						|
                     "If weights are provided, must specify both "
 | 
						|
                     "inside and outside weights.");
 | 
						|
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims);
 | 
						|
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims);
 | 
						|
    }
 | 
						|
 | 
						|
    ctx->SetOutputDim("Diff", x_dims);
 | 
						|
    // loss is a two-rank tensor
 | 
						|
    ctx->SetOutputDim("Out", {x_dims[0], 1});
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X",
 | 
						|
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
 | 
						|
             "The input value of smooth l1 loss op with shape "
 | 
						|
             "[batch_size, dim1, ..., dimN].");
 | 
						|
    AddInput("Y",
 | 
						|
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
 | 
						|
             "The target value of smooth l1 loss op with same shape as X.");
 | 
						|
    AddInput("InsideWeight",
 | 
						|
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
 | 
						|
             "This input is optional and should have same shape with X. "
 | 
						|
             "If provided, the result of (X - Y) will be multiplied "
 | 
						|
             "by this tensor element by element.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput("OutsideWeight",
 | 
						|
             "(Tensor, default Tensor<float>) A tensor with rank at least 2. "
 | 
						|
             "This input is optional and should have same shape with X. "
 | 
						|
             "If provided, the out smooth l1 loss will be multiplied by this "
 | 
						|
             "tensor element by element.")
 | 
						|
        .AsDispensable();
 | 
						|
    AddOutput("Diff", "Intermediate variable to cache InsideWeight * (X - Y).")
 | 
						|
        .AsIntermediate();
 | 
						|
    AddOutput("Out",
 | 
						|
              "(Tensor, default Tensor<float>) A tensor with rank be 2. "
 | 
						|
              "The output smooth l1 loss with shape [batch_size, 1].");
 | 
						|
    AddAttr<float>("sigma",
 | 
						|
                   "Hyper parameter of smooth l1 loss op."
 | 
						|
                   "A float scalar with default value 3.0.")
 | 
						|
        .SetDefault(1.0);
 | 
						|
    AddComment(R"DOC(
 | 
						|
Smooth L1 Loss Operator.
 | 
						|
 | 
						|
This operator computes the smooth l1 loss for X and Y.
 | 
						|
The operator takes the first dimension of X and Y as batch size.
 | 
						|
For each instance, it computes the smooth l1 loss element by element first
 | 
						|
and then sums all the losses. So the shape of Out is [batch_size, 1].
 | 
						|
 | 
						|
The equation is:
 | 
						|
$$
 | 
						|
Out_{\sigma}(X, Y)_i = \begin{cases}
 | 
						|
0.5 * (\sigma * (X_i - Y_i)) ^ 2
 | 
						|
\quad |X_i - Y_i| \lt \frac{1} {{\sigma} ^ 2} \\
 | 
						|
\frac{|X_i - Y_i| - 0.5}{{\sigma}^2},
 | 
						|
\quad otherwise
 | 
						|
\end{cases}
 | 
						|
$$
 | 
						|
 | 
						|
In the above equation, $Out_{\sigma}(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
 | 
						|
element of Out, X and Y.
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SmoothL1LossGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    auto in_dims = ctx->GetInputDim("Diff");
 | 
						|
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
 | 
						|
 | 
						|
    PADDLE_ENFORCE_GE(out_dims.size(), 2,
 | 
						|
                      "The tensor rank of Input(Out@Grad) should be 2.");
 | 
						|
    PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
 | 
						|
                      "The 1st dimension of Input(Out@Grad) must be "
 | 
						|
                      "same as input.");
 | 
						|
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
 | 
						|
                      "The 2nd dimension of Input(Out@Grad) must be 1.");
 | 
						|
 | 
						|
    auto x_grad_name = framework::GradVarName("X");
 | 
						|
    auto y_grad_name = framework::GradVarName("Y");
 | 
						|
    if (ctx->HasOutput(x_grad_name)) {
 | 
						|
      ctx->SetOutputDim(x_grad_name, in_dims);
 | 
						|
    }
 | 
						|
    if (ctx->HasOutput(y_grad_name)) {
 | 
						|
      ctx->SetOutputDim(y_grad_name, in_dims);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SmoothL1LossGradMaker : public framework::SingleGradOpDescMaker {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | 
						|
 | 
						|
 protected:
 | 
						|
  std::unique_ptr<framework::OpDesc> Apply() const override {
 | 
						|
    auto* op = new framework::OpDesc();
 | 
						|
    op->SetType("smooth_l1_loss_grad");
 | 
						|
    op->SetInput("InsideWeight", Input("InsideWeight"));
 | 
						|
    op->SetInput("OutsideWeight", Input("OutsideWeight"));
 | 
						|
    op->SetInput("Diff", Output("Diff"));
 | 
						|
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
 | 
						|
 | 
						|
    op->SetAttrMap(Attrs());
 | 
						|
 | 
						|
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
 | 
						|
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
 | 
						|
    return std::unique_ptr<framework::OpDesc>(op);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker,
 | 
						|
                  ops::SmoothL1LossGradMaker);
 | 
						|
REGISTER_OPERATOR(smooth_l1_loss_grad, ops::SmoothL1LossGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    smooth_l1_loss,
 | 
						|
    ops::SmoothL1LossKernel<paddle::platform::CPUDeviceContext, float>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    smooth_l1_loss_grad,
 | 
						|
    ops::SmoothL1LossGradKernel<paddle::platform::CPUDeviceContext, float>);
 |