You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							121 lines
						
					
					
						
							5.1 KiB
						
					
					
				
			
		
		
	
	
							121 lines
						
					
					
						
							5.1 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/squared_l2_distance_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class SquaredL2DistanceOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"),
 | 
						|
                   "Input(X) of SquaredL2DistanceOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Y"),
 | 
						|
                   "Input(Y) of SquaredL2DistanceOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(
 | 
						|
        ctx->HasOutput("sub_result"),
 | 
						|
        "Output(sub_result) of SquaredL2DistanceOp should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                   "Output(Out) of SquaredL2DistanceOp should not be null.");
 | 
						|
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
 | 
						|
                      "Tensor rank of both SquaredL2DistanceOp's "
 | 
						|
                      "inputs must be same.");
 | 
						|
 | 
						|
    int rank = framework::arity(x_dims);
 | 
						|
    PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2.");
 | 
						|
    PADDLE_ENFORCE_EQ(product(x_dims) / x_dims[0], product(y_dims) / y_dims[0],
 | 
						|
                      "Product of dimensions expcet the first dimension of "
 | 
						|
                      "input and target must be equal.");
 | 
						|
    PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0],
 | 
						|
                   "First dimension of target must be equal to input "
 | 
						|
                   "or to 1.");
 | 
						|
 | 
						|
    ctx->SetOutputDim("sub_result", {x_dims[0], product(x_dims) / x_dims[0]});
 | 
						|
    ctx->SetOutputDim("Out", {x_dims[0], 1});
 | 
						|
    ctx->ShareLoD("X", /*->*/ "Out");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor) Input of SquaredL2DistanceOp.");
 | 
						|
    AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp.");
 | 
						|
    AddOutput("sub_result",
 | 
						|
              "(Tensor) Buffering subtraction result which "
 | 
						|
              "will be reused in backward.")
 | 
						|
        .AsIntermediate();
 | 
						|
    AddOutput("Out", "(Tensor) Squared l2 distance between input and target.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
SquaredL2Distance operator
 | 
						|
 | 
						|
This operator will cacluate the squared L2 distance for the input and 
 | 
						|
the target. Number of distance value will be equal to the first dimension 
 | 
						|
of input. First dimension of the target could be equal to the input or to 1. 
 | 
						|
If the first dimension of target is 1, the operator will broadcast target's 
 | 
						|
first dimension to input's first dimension. During backward propagation, 
 | 
						|
the user can decide whether to calculate the gradient of the input or 
 | 
						|
the target or both.
 | 
						|
 | 
						|
Both the input X and Y can carry the LoD (Level of Details) information. 
 | 
						|
However, the output only shares the LoD information with input X.
 | 
						|
    )DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Gradient of Out should not be null");
 | 
						|
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
 | 
						|
    auto x_dims = ctx->GetInputDim("X");
 | 
						|
    auto y_dims = ctx->GetInputDim("Y");
 | 
						|
    PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
 | 
						|
                      "First dimension of output gradient and "
 | 
						|
                      "input value must be equal.");
 | 
						|
    PADDLE_ENFORCE_EQ(out_dims[1], 1,
 | 
						|
                      "Second dimension of output gradient "
 | 
						|
                      "must be 1.");
 | 
						|
    auto x_grad_name = framework::GradVarName("X");
 | 
						|
    auto y_grad_name = framework::GradVarName("Y");
 | 
						|
    if (ctx->HasOutput(x_grad_name)) ctx->SetOutputDim(x_grad_name, x_dims);
 | 
						|
    if (ctx->HasOutput(y_grad_name)) ctx->SetOutputDim(y_grad_name, y_dims);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(squared_l2_distance, ops::SquaredL2DistanceOp,
 | 
						|
                  ops::SquaredL2DistanceOpMaker,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(squared_l2_distance_grad, ops::SquaredL2DistanceGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    squared_l2_distance,
 | 
						|
    ops::SquaredL2DistanceKernel<paddle::platform::CPUDeviceContext, float>);
 | 
						|
REGISTER_OP_CPU_KERNEL(squared_l2_distance_grad,
 | 
						|
                       ops::SquaredL2DistanceGradKernel<
 | 
						|
                           paddle::platform::CPUDeviceContext, float>);
 |