You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							79 lines
						
					
					
						
							2.6 KiB
						
					
					
				
			
		
		
	
	
							79 lines
						
					
					
						
							2.6 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/squared_l2_norm_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using framework::Tensor;
 | 
						|
 | 
						|
class SquaredL2NormOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
 | 
						|
 | 
						|
    ctx->SetOutputDim("Out", {1});
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SquaredL2NormGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) should be not null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
 | 
						|
                   "Output(X@GRAD) should be not null.");
 | 
						|
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor) The input of squared_l2_norm op.");
 | 
						|
    AddOutput("Out", "(Scalar) The output of squared_l2_norm op.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
SquaredL2Norm Operator.
 | 
						|
 | 
						|
Computes the squared L2 norm of a tensor.
 | 
						|
 | 
						|
$$Out = \sum_{i} X_{i}^2$$
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(squared_l2_norm, ops::SquaredL2NormOp,
 | 
						|
                  ops::SquaredL2NormOpMaker,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(squared_l2_norm_grad, ops::SquaredL2NormGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    squared_l2_norm,
 | 
						|
    ops::SquaredL2NormKernel<paddle::platform::CPUDeviceContext, float>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    squared_l2_norm_grad,
 | 
						|
    ops::SquaredL2NormGradKernel<paddle::platform::CPUDeviceContext, float>);
 |