You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/distribute_transpiler.py

730 lines
29 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import framework
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
from distributed_spliter import *
import math
from . import core
class VarBlock:
def __init__(self, varname, offset, size):
self.varname = varname
# NOTE: real offset is offset * size
self.offset = offset
self.size = size
def __str__(self):
return "%s:%d:%d" % (self.varname, self.offset, self.size)
class UnionFind(object):
""" Union-find data struct.
Union-find is a data struct that keeps track of a set of elements partitioned
into a number of disjoint (non-overlapping) subsets.
Reference:
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
Args:
elements(list): The initialize element list.
"""
def __init__(self, elementes=None):
self._parents = [] # index -> parent index
self._index = {} # element -> index
self._curr_idx = 0
if not elementes:
elementes = []
for ele in elementes:
self._parents.append(self._curr_idx)
self._index.update({ele: self._curr_idx})
self._curr_idx += 1
def find(self, x):
# Find the root index of given element x,
# execute the path compress while findind the root index
if not x in self._index:
return -1
idx = self._index[x]
while idx != self._parents[idx]:
t = self._parents[idx]
self._parents[idx] = self._parents[t]
idx = t
return idx
def union(self, x, y):
# Union two given element
x_root = self.find(x)
y_root = self.find(y)
if x_root == y_root:
return
self._parents[x_root] = y_root
def is_connected(self, x, y):
# If two given elements have the same root index,
# then they are connected.
return self.find(x) == self.find(y)
def same_or_split_var(p_name, var_name):
return p_name == var_name or p_name.startswith(var_name + ".block")
def split_dense_variable(var_list,
pserver_count,
min_block_size=1024,
max_block_size=1048576):
"""
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size is 1024. The max block size is used to prevent
very large blocks that may cause send error.
"""
blocks = []
for var in var_list:
split_count = pserver_count
var_numel = reduce(lambda x, y: x * y, var.shape)
max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
if max_pserver_count == 0:
max_pserver_count = 1
if max_pserver_count < pserver_count:
split_count = max_pserver_count
block_size = int(math.ceil(var_numel / float(split_count)))
if len(var.shape) >= 2:
# align by dim1(width)
dim1 = reduce(lambda x, y: x * y, var.shape[1:])
remains = block_size % dim1
if remains != 0:
block_size += dim1 - remains
# update split_count after aligning
split_count = int(math.ceil(var_numel / float(block_size)))
for block_id in xrange(split_count):
curr_block_size = min(block_size, var_numel - (
(block_id) * block_size))
block = VarBlock(var.name, block_id, curr_block_size)
blocks.append(str(block))
return blocks
class DistributeTranspiler:
def transpile(self,
optimize_ops,
params_grads,
trainer_id,
program=None,
pservers="127.0.0.1:6174",
trainers=1,
split_method=round_robin):
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
Use different methods to split trainable variables to different
parameter servers.
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.
Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param params_grads: list of tuple(weight, gradient)
:type params_grads: list
:param trainer_id: one unique id for each trainer in a job.
:type trainer_id: int
:param program: program to transpile, default is default_main_program
:type program: Program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:param trainers: total number of workers/trainers in the job
:type trainers: int
:param split_method: A function to determin how to split variables
to different servers equally.
:type split_method: function
"""
assert (callable(split_method))
if program is None:
program = default_main_program()
self.program = program
self.trainers = trainers
self.optimize_ops = optimize_ops
# TODO(typhoonzero): currently trainer_id is fetched from cluster system
# like Kubernetes, we should port this to use etcd later when developing
# fluid distributed training with fault-tolerance.
self.trainer_id = trainer_id
pserver_endpoints = pservers.split(",")
# step1
param_list = [pg[0] for pg in params_grads]
grad_list = [pg[1] for pg in params_grads]
grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
# step2
grad_var_mapping = self._append_split_op(program, grad_blocks)
# step3
send_inputs = []
send_outputs = []
for b in grad_blocks: # append by order
varname, block_id, _ = b.split(":")
send_inputs.append(grad_var_mapping[varname][int(block_id)])
param_var_mapping = self._create_vars_from_blocklist(program,
param_blocks)
for b in param_blocks:
varname, block_id, _ = b.split(":")
send_outputs.append(param_var_mapping[varname][int(block_id)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist = split_method(send_inputs, pserver_endpoints)
# create mapping of endpoint -> split var to create pserver side program
self.param_grad_ep_mapping = dict()
for i, ep in enumerate(eplist):
param = send_outputs[i]
grad = send_inputs[i]
if not self.param_grad_ep_mapping.has_key(ep):
self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
self.param_grad_ep_mapping[ep]["params"].append(param)
self.param_grad_ep_mapping[ep]["grads"].append(grad)
rpc_client_var = program.global_block().create_var(
name="RPC_CLIENT_VAR",
persistable=True,
type=core.VarDesc.VarType.RAW)
# create send_op
program.global_block().append_op(
type="send",
inputs={"X": send_inputs},
outputs={"Out": send_outputs,
"RPCClient": rpc_client_var},
attrs={"endpoints": pserver_endpoints,
"epmap": eplist})
# step4
for varname, splited_var in param_var_mapping.iteritems():
if len(splited_var) <= 1:
continue
orig_param = program.global_block().vars[varname]
program.global_block().append_op(
type="concat",
inputs={"X": splited_var},
outputs={"Out": [orig_param]},
attrs={"axis": 0})
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
self.program.global_block().delete_ops(self.optimize_ops)
# FIXME(typhoonzero): serialize once will fix error occurs when clone.
self.program.__str__()
return self.program
def get_pserver_program(self, endpoint):
"""
Get pserver side program using the endpoint.
NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for
trainers to fetch.
"""
# step1
pserver_program = Program()
# step2
recv_inputs = []
for v in self.param_grad_ep_mapping[endpoint]["params"]:
self._clone_var(pserver_program.global_block(), v)
for v in self.param_grad_ep_mapping[endpoint]["grads"]:
# create vars for each trainer in global scope, so
# we don't need to create them when grad arrives.
# change client side var name to origin name by
# removing ".trainer_%d" suffix
suff_idx = v.name.find(".trainer_")
if suff_idx >= 0:
orig_var_name = v.name[:suff_idx]
pserver_program.global_block().create_var(
name=orig_var_name,
persistable=True,
type=v.type,
dtype=v.dtype,
shape=v.shape)
for trainer_id in xrange(self.trainers):
var = pserver_program.global_block().create_var(
name="%s.trainer_%d" % (orig_var_name, trainer_id),
persistable=False,
type=v.type,
dtype=v.dtype,
shape=v.shape)
recv_inputs.append(var)
# step3
optimize_block = pserver_program.create_block(0)
# step 4
# Create a union-find data struct from optimize ops,
# If two ops are connected, we could add these two ops
# into one set.
ufind = self._create_ufind(self.optimize_ops)
# step 4.2
# Iterate through the ops and append optimize op which
# located on current pserver
opt_op_on_pserver = []
for _, op in enumerate(self.optimize_ops):
if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
opt_op_on_pserver.append(op)
# step 4.3
# Iterate through the ops, and if an op and the optimize ops
# which located on current pserver are in one set, then
# append it into the sub program.
for _, op in enumerate(self.optimize_ops):
for _, opt_op in enumerate(opt_op_on_pserver):
if ufind.is_connected(op, opt_op):
if self._is_opt_op(op):
self._append_pserver_ops(optimize_block, op, endpoint,
default_main_program())
else:
self._append_pserver_non_opt_ops(optimize_block, op)
break
# step5 append the listen_and_serv op
pserver_program.global_block().append_op(
type="listen_and_serv",
inputs={'X': recv_inputs},
outputs={},
attrs={
"OptimizeBlock": optimize_block,
"endpoint": endpoint,
"Fanin": self.trainers
})
pserver_program.sync_with_cpp()
return pserver_program
def get_startup_program(self, endpoint, pserver_program):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
were split to several blocks.
"""
s_prog = Program()
orig_s_prog = framework.default_startup_program()
params = self.param_grad_ep_mapping[endpoint]["params"]
def _get_splited_name_and_shape(varname):
for idx, splited_param in enumerate(params):
pname = splited_param.name
if same_or_split_var(pname, varname) and varname != pname:
return pname, splited_param.shape
return "", []
# 1. create vars in pserver program to startup program
pserver_vars = pserver_program.global_block().vars
created_var_map = dict()
for _, var in pserver_vars.iteritems():
tmpvar = s_prog.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
created_var_map[var.name] = tmpvar
# 2. rename op outputs
for op in orig_s_prog.global_block().ops:
new_inputs = dict()
new_outputs = dict()
# do not append startup op if var is not on this pserver
op_on_pserver = False
for key in op.output_names:
newname, _ = _get_splited_name_and_shape(op.output(key)[0])
if newname:
op_on_pserver = True
new_outputs[key] = created_var_map[newname]
elif op.output(key)[0] in pserver_vars:
op_on_pserver = True
new_outputs[key] = pserver_vars[op.output(key)[0]]
# most startup program ops have no inputs
new_inputs = self._get_input_map_from_op(pserver_vars, op)
if op_on_pserver:
if op.type in [
"gaussian_random", "fill_constant", "uniform_random"
]:
op.attrs["shape"] = new_outputs["Out"].shape
s_prog.global_block().append_op(
type=op.type,
inputs=new_inputs,
outputs=new_outputs,
attrs=op.attrs)
return s_prog
# ====================== private transpiler functions =====================
def _create_vars_from_blocklist(self,
program,
block_list,
add_trainer_suffix=False):
"""
NOTE: only grads need to be named for different trainers, use
add_trainer_suffix to rename the grad vars.
"""
block_map = dict()
var_mapping = dict()
for block_str in block_list:
varname, offset, size = block_str.split(":")
if not block_map.has_key(varname):
block_map[varname] = []
block_map[varname].append((long(offset), long(size)))
for varname, splited in block_map.iteritems():
orig_var = program.global_block().var(varname)
if len(splited) == 1:
if add_trainer_suffix:
new_var_name = "%s.trainer_%d" % \
(orig_var.name, self.trainer_id)
program.global_block().rename_var(varname, new_var_name)
var_mapping[varname] = \
[program.global_block().var(new_var_name)]
else:
var_mapping[varname] = \
[program.global_block().var(orig_var.name)]
continue
var_mapping[varname] = []
orig_shape = orig_var.shape
orig_dim1_flatten = 1
if len(orig_shape) >= 2:
orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
for i, block in enumerate(splited):
size = block[1]
rows = size / orig_dim1_flatten
splited_shape = [rows]
if len(orig_shape) >= 2:
splited_shape.extend(orig_shape[1:])
new_var_name = ""
if add_trainer_suffix:
new_var_name = "%s.block%d.trainer_%d" % \
(varname, i, self.trainer_id)
else:
new_var_name = "%s.block%d" % \
(varname, i)
var = program.global_block().create_var(
name=new_var_name,
persistable=False,
dtype=orig_var.dtype,
type=orig_var.type,
shape=splited_shape) # flattend splited var
var_mapping[varname].append(var)
program.global_block().sync_with_cpp()
return var_mapping
def _clone_var(self, block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
def _append_split_op(self, program, gradblocks):
# Split variables that need to be split and append respective ops
var_mapping = self._create_vars_from_blocklist(
program, gradblocks, add_trainer_suffix=True)
for varname, splited_vars in var_mapping.iteritems():
# variable that don't need to split have empty splited_vars
if len(splited_vars) <= 1:
continue
orig_var = program.global_block().vars[varname]
if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
height_sections = []
for v in splited_vars:
height_sections.append(v.shape[0])
program.global_block().append_op(
type="split_selected_rows",
inputs={"X": orig_var},
outputs={"Out": splited_vars},
attrs={"height_sections": height_sections})
elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
sections = []
for v in splited_vars:
sections.append(v.shape[0])
program.global_block().append_op(
type="split",
inputs={"X": orig_var},
outputs={"Out": splited_vars},
attrs={"sections": sections} # assume split evenly
)
else:
AssertionError("Variable type should be in set "
"[LOD_TENSOR, SELECTED_ROWS]")
return var_mapping
def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
param_shape):
"""
Returns the shape for optimizer inputs that need to be reshaped when
Param and Grad is split to multiple servers.
"""
# HACK(typhoonzero): Should use functions of corresponding optimizer in
# optimizer.py to get the shape, do not bind this in the transpiler.
if op_type == "adam":
if varkey in ["Moment1", "Moment2"]:
return param_shape
elif op_type == "adagrad":
if varkey == "Moment":
return param_shape
elif op_type == "adamax":
if varkey in ["Moment", "InfNorm"]:
return param_shape
elif op_type == "momentum":
if varkey == "Velocity":
return param_shape
elif op_type == "":
if varkey == "Moment":
return param_shape
elif op_type == "sgd":
pass
return orig_shape
def _orig_varname(self, varname):
suff_idx = varname.find(".trainer_")
orig_var_name = ""
if suff_idx >= 0:
orig_var_name = varname[:suff_idx]
return orig_var_name
def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
origin_program):
program = optimize_block.program
pserver_block = program.global_block()
new_inputs = dict()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
for key in opt_op.input_names:
if key == "Grad":
grad_block = None
for g in self.param_grad_ep_mapping[endpoint]["grads"]:
if same_or_split_var(
self._orig_varname(g.name), opt_op.input(key)[0]):
grad_block = g
break
if not grad_block:
# do not append this op if current endpoint
# is not dealing with this grad block
return
merged_var = \
pserver_block.vars[self._orig_varname(grad_block.name)]
if self.trainers > 1:
vars2merge = []
for i in xrange(self.trainers):
per_trainer_name = "%s.trainer_%d" % \
(self._orig_varname(grad_block.name), i)
vars2merge.append(pserver_block.vars[per_trainer_name])
optimize_block.append_op(
type="sum",
inputs={"X": vars2merge},
outputs={"Out": merged_var})
if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
optimize_block.append_op(
type="scale",
inputs={"X": merged_var},
outputs={"Out": merged_var},
attrs={"scale": 1.0 / float(self.trainers)})
new_inputs[key] = merged_var
elif key == "Param":
# param is already created on global program
param_block = None
for p in self.param_grad_ep_mapping[endpoint]["params"]:
if same_or_split_var(p.name, opt_op.input(key)[0]):
param_block = p
break
if not param_block:
return
tmpvar = pserver_block.create_var(
name=param_block.name,
persistable=True,
dtype=param_block.dtype,
shape=param_block.shape)
new_inputs[key] = tmpvar
elif key == "LearningRate":
# leraning rate variable has already be created by non-optimize op,
# don't create it once again.
lr_varname = opt_op.input(key)[0]
if pserver_block.vars.has_key(lr_varname):
new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
else:
origin_var = origin_program.global_block().vars[lr_varname]
tmpvar = pserver_block.create_var(
name=origin_var.name,
persistable=origin_var.persistable,
dtype=origin_var.dtype,
shape=origin_var.shape)
new_inputs[key] = tmpvar
for key in opt_op.input_names:
new_shape = None
if key in ["Param", "Grad", "LearningRate"]:
continue
var = self.program.global_block().vars[opt_op.input(key)[0]]
# update accumulator variable shape
param_shape = new_inputs["Param"].shape
new_shape = self._get_optimizer_input_shape(opt_op.type, key,
var.shape, param_shape)
tmpvar = pserver_block.create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=new_shape)
new_inputs[key] = tmpvar
# change output's ParamOut variable
outputs = self._get_output_map_from_op(self.program.global_block().vars,
opt_op)
outputs["ParamOut"] = new_inputs["Param"]
optimize_block.append_op(
type=opt_op.type,
inputs=new_inputs,
outputs=outputs,
attrs=opt_op.attrs)
def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
program = optimize_block.program
# Append the ops for parameters that do not need to be optimized/updated
inputs = self._get_input_map_from_op(self.program.global_block().vars,
opt_op)
for varlist in inputs.itervalues():
if not isinstance(varlist, list):
varlist = [varlist]
for var in varlist:
if not program.global_block().vars.has_key(var.name):
program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
outputs = self._get_output_map_from_op(self.program.global_block().vars,
opt_op)
for varlist in outputs.itervalues():
if not isinstance(varlist, list):
varlist = [varlist]
for var in varlist:
program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
optimize_block.append_op(
type=opt_op.type,
inputs=inputs,
outputs=outputs,
attrs=opt_op.attrs)
def _is_op_connected(self, op1, op2):
# If one op's input is another op's output or
# one op's output is another op's input, we say
# the two operator is connected.
op1_input_names = op1.desc.input_arg_names()
op1_output_names = op1.desc.output_arg_names()
op2_input_names = op2.desc.input_arg_names()
op2_output_names = op2.desc.output_arg_names()
if set(op1_output_names) & set(op2_input_names) or \
set(op1_input_names) & set(op2_output_names):
return True
return False
def _create_ufind(self, optimize_ops):
# Create a unit find data struct by optimize ops
ufind = UnionFind(optimize_ops)
for i in xrange(len(optimize_ops)):
for j in xrange(i, len(optimize_ops)):
op1 = optimize_ops[i]
op2 = optimize_ops[j]
if self._is_op_connected(op1, op2):
ufind.union(op1, op2)
return ufind
def _is_opt_op(self, op):
# NOTE: It's a HACK implement.
# optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
if "Param" in op.input_names and \
"LearningRate" in op.input_names:
return True
return False
def _is_opt_op_on_pserver(self, endpoint, op):
param_names = [
p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
]
if op.input("Param") in param_names:
return True
else:
for n in param_names:
param = op.input("Param")[0]
if same_or_split_var(n, param) and n != param:
return True
return False
return False
def _get_input_map_from_op(self, varmap, op):
iomap = dict()
for key in op.input_names:
vars = []
for varname in op.input(key):
vars.append(varmap[varname])
if len(vars) == 1:
iomap[key] = vars[0]
else:
iomap[key] = vars
return iomap
def _get_output_map_from_op(self, varmap, op):
iomap = dict()
for key in op.output_names:
vars = []
for varname in op.output(key):
vars.append(varmap[varname])
if len(vars) == 1:
iomap[key] = vars[0]
else:
iomap[key] = vars
return iomap