You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/gru_compute.cc

166 lines
6.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/gru_compute.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
namespace paddle {
namespace platform {
class CPUDeviceContext;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
namespace math {
template <typename T>
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
static void compute(const platform::CPUDeviceContext &context,
GRUMetaValue<T> value, int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate,
bool origin_mode) {
#ifndef __NVCC__
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
if (value.prev_out_value) {
blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
value.prev_out_value, frame_size, value.gate_weight,
frame_size * 2, 1, value.gate_value, frame_size * 3);
}
detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
frame_size, batch_size, active_gate);
if (value.prev_out_value) {
blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
value.reset_output_value, frame_size, value.state_weight,
frame_size, 1, value.gate_value + frame_size * 2,
frame_size * 3);
}
detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
frame_size, batch_size, active_node,
origin_mode);
#endif
}
};
template <typename T>
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
static void compute(const platform::CPUDeviceContext &context,
GRUMetaValue<T> value, GRUMetaGrad<T> grad,
int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate,
bool origin_mode) {
#ifndef __NVCC__
detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
grad, frame_size, batch_size, active_node,
origin_mode);
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
if (value.prev_out_value && grad.prev_out_grad) {
blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
grad.gate_grad + frame_size * 2, frame_size * 3,
value.state_weight, frame_size, 0, grad.reset_output_grad,
frame_size);
if (grad.state_weight_grad) {
blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
value.reset_output_value, frame_size,
grad.gate_grad + frame_size * 2, frame_size * 3, 1,
grad.state_weight_grad, frame_size);
}
}
detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
grad, frame_size, batch_size, active_gate);
if (grad.prev_out_grad && value.prev_out_value) {
blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
grad.gate_grad, frame_size * 3, value.gate_weight,
frame_size * 2, 1, grad.prev_out_grad, frame_size);
if (grad.gate_weight_grad) {
blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
value.prev_out_value, frame_size, grad.gate_grad,
frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
}
}
#endif
}
};
template <typename T>
struct GRUUnitFunctorV2<platform::CPUDeviceContext, T> {
static void compute(const platform::CPUDeviceContext &context,
GRUMetaValue<T> value, int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate) {
#ifndef __NVCC__
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
if (value.prev_out_value) {
blas.GEMM(CblasNoTrans, CblasTrans, batch_size, frame_size, frame_size, 1,
value.prev_out_value, value.state_weight, 0,
value.reset_output_value);
}
detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
frame_size, batch_size, active_gate, false);
T *cell_state_value = value.gate_value + 2 * frame_size;
T *reset_output_value = value.reset_output_value;
for (int b = 0; b < batch_size; ++b) {
blas.VADD(frame_size, cell_state_value, reset_output_value,
cell_state_value);
cell_state_value += frame_size * 3;
reset_output_value += frame_size;
}
detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
frame_size, batch_size, active_node, true,
false);
#endif
}
};
template <typename T>
struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, T> {
static void compute(const platform::CPUDeviceContext &context,
GRUMetaValue<T> value, GRUMetaGrad<T> grad,
int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate) {
#ifndef __NVCC__
// calculate grad_update_gate, grad_frame_state,
// grad_reset_output, grad_reset_gate
detail::cpu_gru_backward(detail::backward::gru<T>(), value, grad,
frame_size, batch_size, active_node, active_gate);
#endif
}
};
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctorV2<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctorV2<platform::CPUDeviceContext, double>;
} // namespace math
} // namespace operators
} // namespace paddle