You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_scatter_op.py

239 lines
8.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from op_test import OpTest
import paddle.fluid.core as core
class TestScatterOp(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 50)).astype("float32")
index_np = np.array([1, 2]).astype("int32")
updates_np = np.random.random((2, 50)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = updates_np
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X", "Updates"], "Out")
class TestScatterOp0(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
index_np = np.array([1, 2]).astype("int32")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = updates_np
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.attrs = {'overwrite': True}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X", "Updates"], "Out")
class TestScatterOp1(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
zeros_np = np.zeros([2, 3]).astype('float32')
index_np = np.array([1, 1]).astype("int32")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = zeros_np
for i in range(0, len(index_np)):
output_np[index_np[i]] += updates_np[i]
self.attrs = {'overwrite': False}
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X", "Updates"], "Out")
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestScatterOp2(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
index_np = np.array([1, 2]).astype("int32")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = updates_np
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-3)
def test_check_grad(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestScatterOp3(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
zeros_np = np.zeros([2, 3]).astype('float32')
index_np = np.array([1, 1]).astype("int32")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = zeros_np
for i in range(0, len(index_np)):
output_np[index_np[i]] += updates_np[i]
self.attrs = {'overwrite': False}
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-3)
def test_check_grad(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
class TestScatterOp4(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
index_np = np.array([1, 2]).astype("int64")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = updates_np
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Updates'], 'Out')
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestScatterOp5(OpTest):
def setUp(self):
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
index_np = np.array([1, 2]).astype("int64")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] = updates_np
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-3)
def test_check_grad(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
class TestScatterAPI(unittest.TestCase):
def setUp(self):
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
self.executed_api()
def executed_api(self):
self.scatter = paddle.scatter
def check_static_result(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[3, 2], dtype="float64")
index = fluid.data(name="index", shape=[4], dtype="int64")
updates = fluid.data(name="updates", shape=[4, 2], dtype="float64")
result = self.scatter(input, index, updates, False)
input_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
index_data = np.array([2, 1, 0, 1]).astype(np.int64)
updates_data = np.array(
[[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)
exe = fluid.Executor(place)
fetches = exe.run(fluid.default_main_program(),
feed={
"input": input_data,
"index": index_data,
"updates": updates_data
},
fetch_list=[result])
self.assertEqual((fetches[0] == \
np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
index_data = np.array([2, 1, 0, 1]).astype(np.int64)
updates_data = np.array(
[[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)
x = fluid.dygraph.to_variable(x_data)
index = fluid.dygraph.to_variable(index_data)
updates = fluid.dygraph.to_variable(updates_data)
output1 = self.scatter(x, index, updates, overwrite=False)
self.assertEqual((output1.numpy() == \
np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)
class TestScatterInplaceAPI(TestScatterAPI):
def executed_api(self):
self.scatter = paddle.scatter_
if __name__ == "__main__":
unittest.main()