You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
307 lines
12 KiB
307 lines
12 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/slice_op.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class SliceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
|
|
"Input (Input) of slice op should not be null.");
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
"Output (Out) of slice op should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
PADDLE_ENFORCE_LT(in_dims.size(), 7,
|
|
"The rank of input should be less than 7.");
|
|
framework::DDim out_dims(in_dims);
|
|
|
|
auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
|
auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
|
|
auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
|
|
auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
|
|
auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
|
|
|
|
auto starts_size = starts.size();
|
|
auto ends_size = ends.size();
|
|
if (infer_flags.empty()) {
|
|
// Initialize infer_flags with 1.
|
|
// To be compatible with other op tests in which infer_flags is not set.
|
|
infer_flags = std::vector<int>(axes.size(), 1);
|
|
}
|
|
|
|
if (ctx->HasInputs("StartsTensorList")) {
|
|
auto StartsTensorList = ctx->Inputs("StartsTensorList");
|
|
PADDLE_ENFORCE_GT(StartsTensorList.size(), 0,
|
|
"StartsTensorList size can't be zero");
|
|
starts_size = StartsTensorList.size();
|
|
}
|
|
if (ctx->HasInputs("EndsTensorList")) {
|
|
auto EndsTensorList = ctx->Inputs("EndsTensorList");
|
|
PADDLE_ENFORCE_GT(EndsTensorList.size(), 0,
|
|
"EndsTensorList size can't be zero");
|
|
ends_size = EndsTensorList.size();
|
|
}
|
|
|
|
if (ctx->HasInput("StartsTensor") == false) {
|
|
PADDLE_ENFORCE_EQ(
|
|
starts_size, axes.size(),
|
|
"The size of starts must be equal to the size of axes.");
|
|
}
|
|
if (ctx->HasInput("EndsTensor") == false) {
|
|
PADDLE_ENFORCE_EQ(ends_size, axes.size(),
|
|
"The size of ends must be equal to the size of axes.");
|
|
}
|
|
|
|
int dim_value, start, end;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
PADDLE_ENFORCE_LT(static_cast<int>(axes[i]), in_dims.size(),
|
|
"The index of dimension in axes must be less "
|
|
"than the size of input shape.");
|
|
if (infer_flags[i] == -1) {
|
|
out_dims[axes[i]] = -1;
|
|
} else {
|
|
// infer out_dim shape
|
|
dim_value = out_dims[axes[i]];
|
|
if (dim_value > 0) {
|
|
start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
|
|
end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
|
|
start = std::max(start, 0);
|
|
end = std::max(end, 0);
|
|
end = std::min(end, dim_value);
|
|
PADDLE_ENFORCE_GT(end, start, "end should greater than start");
|
|
out_dims[axes[i]] = end - start;
|
|
}
|
|
}
|
|
}
|
|
// generate new shape
|
|
if (decrease_axis.size() > 0) {
|
|
std::vector<int> new_out_shape;
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
if (ctx->IsRuntime() && infer_flags[i] != -1) {
|
|
PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
|
|
"decrease dim should be 1");
|
|
}
|
|
out_dims[decrease_axis[i]] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < out_dims.size(); ++i) {
|
|
if (out_dims[i] != 0) {
|
|
new_out_shape.push_back(out_dims[i]);
|
|
}
|
|
}
|
|
if (new_out_shape.size() == 0) {
|
|
new_out_shape.push_back(1);
|
|
}
|
|
|
|
out_dims = framework::make_ddim(new_out_shape);
|
|
}
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (axes[0] != 0) {
|
|
ctx->ShareLoD("Input", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.device_context());
|
|
}
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
if (var_name == "StartsTensor" || var_name == "EndsTensor") {
|
|
return expected_kernel_type;
|
|
}
|
|
if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
|
|
AddInput("StartsTensor",
|
|
"(Tensor<int32>, optional) If provided, slice will use this."
|
|
"It has the highest priority of StartsTensor, StartsTensorList "
|
|
"and attr(starts).")
|
|
.AsDispensable();
|
|
AddInput("EndsTensor",
|
|
"(Tensor<int32>, optional) If provided, slice will use this."
|
|
"It has the highest priority of EndsTensor, EndsTensorList and "
|
|
"attr(ends).")
|
|
.AsDispensable();
|
|
AddInput(
|
|
"StartsTensorList",
|
|
"(vector<Tensor<int32>>, optional) If provided, slice will use this."
|
|
"The shape of the tensor in vector MUST BE [1]."
|
|
"It has higher priority compare with attr(starts).")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddInput(
|
|
"EndsTensorList",
|
|
"(vector<Tensor<int32>>, optional) If provided, slice will use this."
|
|
"The shape of the tensor in vector MUST BE [1]."
|
|
"It has higher priority compare with attr(ends).")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddOutput("Out", "Sliced data tensor.");
|
|
AddAttr<std::vector<int>>(
|
|
"axes",
|
|
"(list<int>) Axes that `starts` and `ends` apply to. It's optional."
|
|
"If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
|
|
AddAttr<std::vector<int>>(
|
|
"starts",
|
|
"(list<int>) Starting indices of corresponding axis in `axes`")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<int>>(
|
|
"ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<int>>(
|
|
"infer_flags", "(list<int>) Flags of inferring dims in attributes.")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
|
|
.SetDefault({});
|
|
AddComment(R"DOC(
|
|
Slice Operator.
|
|
|
|
Produces a slice of the input tensor along multiple axes. Similar to numpy:
|
|
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
|
|
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
|
|
end dimension for each axis in the list of axes, it uses this information
|
|
to slice the input data tensor. If a negative value is passed for any of
|
|
the start or end indices, it represents number of elements before the end
|
|
of that dimension. If the value passed to start or end is larger than
|
|
the n (the number of elements in this dimension), it represents n.
|
|
For slicing to the end of a dimension with unknown size, it is recommended
|
|
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
|
|
Following examples will explain how slice works:
|
|
|
|
.. code-block:: text
|
|
|
|
Case1:
|
|
Given:
|
|
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
|
|
axes = [0, 1]
|
|
starts = [1, 0]
|
|
ends = [2, 3]
|
|
Then:
|
|
result = [ [5, 6, 7], ]
|
|
|
|
Case2:
|
|
Given:
|
|
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
|
|
starts = [0, 1]
|
|
ends = [-1, 1000]
|
|
Then:
|
|
result = [ [2, 3, 4], ]
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SliceOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, "Input should not be null");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx->GetInputDim("Input");
|
|
auto x_grad_name = framework::GradVarName("Input");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.device_context());
|
|
}
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
if (var_name == "StartsTensor" || var_name == "EndsTensor") {
|
|
return expected_kernel_type;
|
|
}
|
|
if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class SliceOpGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *bind = new framework::OpDesc();
|
|
bind->SetInput("Input", Input("Input"));
|
|
bind->SetInput("StartsTensor", Input("StartsTensor"));
|
|
bind->SetInput("EndsTensor", Input("EndsTensor"));
|
|
bind->SetInput("StartsTensorList", Input("StartsTensorList"));
|
|
bind->SetInput("EndsTensorList", Input("EndsTensorList"));
|
|
bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
bind->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
|
|
bind->SetAttrMap(Attrs());
|
|
bind->SetType("slice_grad");
|
|
return std::unique_ptr<framework::OpDesc>(bind);
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(SliceOpGradNoNeedBufferVarsInference,
|
|
"Input");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
|
|
ops::SliceOpGradMaker);
|
|
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
|
|
ops::SliceOpGradNoNeedBufferVarsInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SliceKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>);
|