You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py

415 lines
15 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid import framework
from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell
from paddle.fluid.layers import rnn as dynamic_rnn
from paddle.fluid import contrib
from paddle.fluid.contrib.layers import basic_lstm
import paddle.fluid.layers.utils as utils
import numpy as np
class TestLSTMCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, self.hidden_size], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, self.hidden_size], dtype='float32')
cell = LSTMCell(self.hidden_size)
lstm_hidden_new, lstm_states_new = cell(inputs, [pre_hidden, pre_cell])
lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
"basicLSTM", self.hidden_size, None, None, None, None, 1.0,
"float32")
lstm_hidden, lstm_cell = lstm_unit(inputs, pre_hidden, pre_cell)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell/BasicLSTMUnit_0.w_0", "basicLSTM/BasicLSTMUnit_0.w_0"
], ["LSTMCell/BasicLSTMUnit_0.b_0", "basicLSTM/BasicLSTMUnit_0.b_0"]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[lstm_hidden_new, lstm_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestGRUCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = layers.data(
name='pre_hidden',
shape=[None, self.hidden_size],
append_batch_size=False,
dtype='float32')
cell = GRUCell(self.hidden_size)
gru_hidden_new, _ = cell(inputs, pre_hidden)
gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
"basicGRU", self.hidden_size, None, None, None, None, "float32")
gru_hidden = gru_unit(inputs, pre_hidden)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [
["GRUCell/BasicGRUUnit_0.w_0", "basicGRU/BasicGRUUnit_0.w_0"],
["GRUCell/BasicGRUUnit_0.w_1", "basicGRU/BasicGRUUnit_0.w_1"],
["GRUCell/BasicGRUUnit_0.b_0", "basicGRU/BasicGRUUnit_0.b_0"],
["GRUCell/BasicGRUUnit_0.b_1", "basicGRU/BasicGRUUnit_0.b_1"]
]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={'inputs': inputs_np,
'pre_hidden': pre_hidden_np},
fetch_list=[gru_hidden_new, gru_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestRnn(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
self.seq_len = 4
def test_run(self):
inputs_basic_lstm = fluid.data(
name='inputs_basic_lstm',
shape=[None, None, self.input_size],
dtype='float32')
sequence_length = fluid.data(
name="sequence_length", shape=[None], dtype='int64')
inputs_dynamic_rnn = layers.transpose(inputs_basic_lstm, perm=[1, 0, 2])
cell = LSTMCell(self.hidden_size, name="LSTMCell_for_rnn")
output, final_state = dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
sequence_length=sequence_length,
is_reverse=False)
output_new = layers.transpose(output, perm=[1, 0, 2])
rnn_out, last_hidden, last_cell = basic_lstm(inputs_basic_lstm, None, None, self.hidden_size, num_layers=1, \
batch_first = False, bidirectional=False, sequence_length=sequence_length, forget_bias = 1.0)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_basic_lstm_np = np.random.uniform(
-0.1, 0.1,
(self.seq_len, self.batch_size, self.input_size)).astype('float32')
sequence_length_np = np.ones(
self.batch_size, dtype='int64') * self.seq_len
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell_for_rnn/BasicLSTMUnit_0.w_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.w_0"
], [
"LSTMCell_for_rnn/BasicLSTMUnit_0.b_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.b_0"
]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs_basic_lstm': inputs_basic_lstm_np,
'sequence_length': sequence_length_np,
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[output_new, rnn_out])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4))
class TestRnnUtil(unittest.TestCase):
"""
Test cases for rnn apis' utility methods for coverage.
"""
def test_case(self):
inputs = {"key1": 1, "key2": 2}
func = lambda x: x + 1
outputs = utils.map_structure(func, inputs)
utils.assert_same_structure(inputs, outputs)
try:
inputs["key3"] = 3
utils.assert_same_structure(inputs, outputs)
except ValueError as identifier:
pass
class EncoderCell(RNNCell):
"""Encoder Cell"""
def __init__(
self,
num_layers,
hidden_size,
dropout_prob=0.,
init_scale=0.1, ):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def call(self, step_input, states):
new_states = []
for i in range(self.num_layers):
out, new_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out,
self.dropout_prob, ) if self.dropout_prob else out
new_states.append(new_state)
return step_input, new_states
@property
def state_shape(self):
return [cell.state_shape for cell in self.lstm_cells]
class DecoderCell(RNNCell):
"""Decoder Cell"""
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def call(self, step_input, states):
new_lstm_states = []
for i in range(self.num_layers):
out, new_lstm_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out,
self.dropout_prob, ) if self.dropout_prob else out
new_lstm_states.append(new_lstm_state)
return step_input, new_lstm_states
def def_seq2seq_model(num_layers, hidden_size, dropout_prob, src_vocab_size,
trg_vocab_size):
"vanilla seq2seq model"
# data
source = fluid.data(name="src", shape=[None, None], dtype="int64")
source_length = fluid.data(
name="src_sequence_length", shape=[None], dtype="int64")
target = fluid.data(name="trg", shape=[None, None], dtype="int64")
target_length = fluid.data(
name="trg_sequence_length", shape=[None], dtype="int64")
label = fluid.data(name="label", shape=[None, None, 1], dtype="int64")
# embedding
src_emb = fluid.embedding(source, (src_vocab_size, hidden_size))
tar_emb = fluid.embedding(target, (src_vocab_size, hidden_size))
# encoder
enc_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
enc_output, enc_final_state = dynamic_rnn(
cell=enc_cell, inputs=src_emb, sequence_length=source_length)
# decoder
dec_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
dec_output, dec_final_state = dynamic_rnn(
cell=dec_cell, inputs=tar_emb, initial_states=enc_final_state)
logits = layers.fc(dec_output,
size=trg_vocab_size,
num_flatten_dims=len(dec_output.shape) - 1,
bias_attr=False)
# loss
loss = layers.softmax_with_cross_entropy(
logits=logits, label=label, soft_label=False)
loss = layers.unsqueeze(loss, axes=[2])
max_tar_seq_len = layers.shape(target)[1]
tar_mask = layers.sequence_mask(
target_length, maxlen=max_tar_seq_len, dtype="float")
loss = loss * tar_mask
loss = layers.reduce_mean(loss, dim=[0])
loss = layers.reduce_sum(loss)
# optimizer
optimizer = fluid.optimizer.Adam(0.001)
optimizer.minimize(loss)
return loss
class TestSeq2SeqModel(unittest.TestCase):
"""
Test cases to confirm seq2seq api training correctly.
"""
def setUp(self):
np.random.seed(123)
self.model_hparams = {
"num_layers": 2,
"hidden_size": 128,
"dropout_prob": 0.1,
"src_vocab_size": 100,
"trg_vocab_size": 100
}
self.iter_num = iter_num = 2
self.batch_size = batch_size = 4
src_seq_len = 10
trg_seq_len = 12
self.data = {
"src": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, src_seq_len)).astype("int64"),
"src_sequence_length": np.random.randint(
1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
"trg": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len)).astype("int64"),
"trg_sequence_length": np.random.randint(
1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
"label": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
}
place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
) else core.CPUPlace()
self.exe = Executor(place)
def test_seq2seq_model(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
cost = def_seq2seq_model(**self.model_hparams)
self.exe.run(startup_program)
for iter_idx in range(self.iter_num):
cost_val = self.exe.run(feed={
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size],
"trg": self.data["trg"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"trg_sequence_length": self.data["trg_sequence_length"][
iter_idx * self.batch_size:(iter_idx + 1
) * self.batch_size],
"label": self.data["label"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size]
},
fetch_list=[cost])[0]
print("iter_idx: %d, cost: %f" % (iter_idx, cost_val))
if __name__ == '__main__':
unittest.main()