You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
890 lines
33 KiB
890 lines
33 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import errno
|
|
import time
|
|
import shutil
|
|
|
|
from paddle.fluid.evaluator import Evaluator
|
|
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
|
|
from . import core
|
|
|
|
__all__ = [
|
|
'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
|
|
'load_persistables', 'save_inference_model', 'load_inference_model',
|
|
'get_inference_program'
|
|
]
|
|
|
|
|
|
def is_parameter(var):
|
|
"""
|
|
Check whether the given variable is an instance of Parameter.
|
|
|
|
Args:
|
|
var(Variable): The variable to be checked.
|
|
|
|
Returns:
|
|
bool: True if the given `var` is an instance of Parameter,
|
|
False if not.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
param = fluid.default_main_program().global_block().var('fc.w')
|
|
res = fluid.io.is_parameter(param)
|
|
"""
|
|
return isinstance(var, Parameter)
|
|
|
|
|
|
def is_persistable(var):
|
|
"""
|
|
Check whether the given variable is persistable.
|
|
|
|
Args:
|
|
var(Variable): The variable to be checked.
|
|
|
|
Returns:
|
|
bool: True if the given `var` is persistable
|
|
False if not.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
param = fluid.default_main_program().global_block().var('fc.w')
|
|
res = fluid.io.is_persistable(param)
|
|
"""
|
|
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
|
|
var.desc.type() == core.VarDesc.VarType.FETCH_LIST:
|
|
return False
|
|
return var.persistable
|
|
|
|
|
|
def _clone_var_in_block_(block, var):
|
|
assert isinstance(var, Variable)
|
|
return block.create_var(
|
|
name=var.name,
|
|
shape=var.shape,
|
|
dtype=var.dtype,
|
|
type=var.type,
|
|
lod_level=var.lod_level,
|
|
persistable=True)
|
|
|
|
|
|
def save_vars(executor,
|
|
dirname,
|
|
main_program=None,
|
|
vars=None,
|
|
predicate=None,
|
|
filename=None):
|
|
"""
|
|
Save variables to the given directory by executor.
|
|
|
|
There are two ways to specify variables to be saved: The first way, list
|
|
variables in a list and assign it to the `vars`. The second way, assign the
|
|
`main_program` with an existing program, then all variables in the program
|
|
will be saved. The first way has a higher priority. In other words, if `vars`
|
|
are assigned, the `main_program` and the `predicate` will be ignored.
|
|
|
|
The `dirname` are used to specify the folder where to save variables.
|
|
If you prefer to save variables in separate files in the folder `dirname`,
|
|
set `filename` None; if you prefer to save all variables in a single file,
|
|
use `filename` to specify it.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for saving variables.
|
|
dirname(str): The directory path.
|
|
main_program(Program|None): The program whose variables will be saved.
|
|
If it is None, the default main program will
|
|
be used automatically.
|
|
Default: None
|
|
vars(list[Variable]|None): The list that contains all variables to save.
|
|
It has a higher priority than the `main_program`.
|
|
Default: None
|
|
predicate(function|None): If it is not None, only variables in the
|
|
`main_program` that makes predicate(variable)==True
|
|
will be saved. It only works when we are using the
|
|
`main_program` to specify variables (In other words
|
|
`vars` is None).
|
|
Default: None
|
|
filename(str|None): The file which to save all variables. If you prefer to save
|
|
variables separately, set it to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
TypeError: If `main_program` is not an instance of Program nor None.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
|
|
# The first usage: using `main_program` to specify variables
|
|
def name_has_fc(var):
|
|
res = "fc" in var.name
|
|
return res
|
|
|
|
prog = fluid.default_main_program()
|
|
fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
|
|
vars=None)
|
|
# All variables in `main_program` whose name includes "fc" will be saved.
|
|
# And variables are going to be saved separately.
|
|
|
|
|
|
# The second usage: using `vars` to specify variables
|
|
var_list = [var_a, var_b, var_c]
|
|
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
|
|
filename="vars_file")
|
|
# var_a, var_b and var_c will be saved. And they are going to be
|
|
# saved in the same file named 'var_file' in the path "./my_paddle_model".
|
|
"""
|
|
if vars is None:
|
|
if main_program is None:
|
|
main_program = default_main_program()
|
|
if not isinstance(main_program, Program):
|
|
raise TypeError("program should be as Program type or None")
|
|
|
|
save_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
vars=filter(predicate, main_program.list_vars()),
|
|
filename=filename)
|
|
else:
|
|
save_program = Program()
|
|
save_block = save_program.global_block()
|
|
|
|
save_var_map = {}
|
|
for each_var in vars:
|
|
# NOTE: don't save the variable which type is RAW
|
|
if each_var.type == core.VarDesc.VarType.RAW:
|
|
continue
|
|
new_var = _clone_var_in_block_(save_block, each_var)
|
|
if filename is None:
|
|
save_block.append_op(
|
|
type='save',
|
|
inputs={'X': [new_var]},
|
|
outputs={},
|
|
attrs={'file_path': os.path.join(dirname, new_var.name)})
|
|
else:
|
|
save_var_map[new_var.name] = new_var
|
|
|
|
if filename is not None:
|
|
save_var_list = []
|
|
for name in sorted(save_var_map.keys()):
|
|
save_var_list.append(save_var_map[name])
|
|
|
|
save_block.append_op(
|
|
type='save_combine',
|
|
inputs={'X': save_var_list},
|
|
outputs={},
|
|
attrs={'file_path': os.path.join(dirname, filename)})
|
|
|
|
executor.run(save_program)
|
|
|
|
|
|
def save_params(executor, dirname, main_program=None, filename=None):
|
|
"""
|
|
This function filters out all parameters from the give `main_program`
|
|
and then save them to the folder `dirname` or the file `filename`.
|
|
|
|
Use the `dirname` to specify the saving folder. If you would like to
|
|
save parameters in separate files, set `filename` None; if you would
|
|
like to save all parameters in a single file, use `filename` to specify
|
|
the file name.
|
|
|
|
NOTICE: Some variables are not Parameter while they are necessary for
|
|
training. So you can NOT save and continue your training just by
|
|
`save_params()` and `load_params()`. Please use `save_persistables()`
|
|
and `load_persistables()` instead.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for saving parameters.
|
|
dirname(str): The saving directory path.
|
|
main_program(Program|None): The program whose parameters will be
|
|
saved. If it is None, the default
|
|
main program will be used automatically.
|
|
Default: None
|
|
filename(str|None): The file to save all parameters. If you prefer
|
|
to save parameters in differnet files, set it
|
|
to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
prog = fluid.default_main_program()
|
|
fluid.io.save_params(executor=exe, dirname=param_path,
|
|
main_program=None)
|
|
"""
|
|
save_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
main_program=main_program,
|
|
vars=None,
|
|
predicate=is_parameter,
|
|
filename=filename)
|
|
|
|
|
|
def save_persistables(executor, dirname, main_program=None, filename=None):
|
|
"""
|
|
This function filters out all variables with `persistable==True` from the
|
|
give `main_program` and then saves these variables to the folder `dirname`
|
|
or file `filename`.
|
|
|
|
The `dirname` is used to specify the folder where persistable variables
|
|
are going to be saved. If you would like to save variables in separate
|
|
files, set `filename` None; if you would like to save all variables in a
|
|
single file, use `filename` to specify the file name.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for saving persistable variables.
|
|
dirname(str): The directory path.
|
|
main_program(Program|None): The program whose persistbale variables will
|
|
be saved. If it is None, the default main
|
|
program will be used automatically.
|
|
Default: None
|
|
filename(str|None): The file to saved all variables. If you prefer to
|
|
save variables in differnet files, set it to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
prog = fluid.default_main_program()
|
|
fluid.io.save_persistables(executor=exe, dirname=param_path,
|
|
main_program=None)
|
|
"""
|
|
save_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
main_program=main_program,
|
|
vars=None,
|
|
predicate=is_persistable,
|
|
filename=filename)
|
|
|
|
|
|
def load_vars(executor,
|
|
dirname,
|
|
main_program=None,
|
|
vars=None,
|
|
predicate=None,
|
|
filename=None):
|
|
"""
|
|
Load variables from the given directory by executor.
|
|
|
|
There are two ways to specify variables to be loaded: The first way, list
|
|
variables in a list and assign it to the `vars`. The second way, assign the
|
|
`main_program` with an existing program, then all variables in the program
|
|
will be loaded. The first way has a higher priority. In other words if `vars`
|
|
are assigned, the `main_program` and the `predicate` will be ignored.
|
|
|
|
The `dirname` are used to specify the folder where to load variables.
|
|
If variables were saved in separate files in the folder `dirname`,
|
|
set `filename` None; if all variables were saved in a single file,
|
|
use `filename` to specify it.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for loading variables.
|
|
dirname(str): The directory path.
|
|
main_program(Program|None): The program whose variables will be loaded.
|
|
If it is None, the default main program will
|
|
be used automatically.
|
|
Default: None
|
|
vars(list[Variable]|None): The list that contains all variables to load.
|
|
It has a higher priority than the `main_program`.
|
|
Default: None
|
|
predicate(function|None): If it is not None, only variables in the
|
|
`main_program` that makes predicate(variable)==True
|
|
will be loaded. It only works when we are using the
|
|
`main_program` to specify variables (In other words
|
|
`vars` is None).
|
|
Default: None
|
|
filename(str|None): The file which saved all required variables. If variables
|
|
were saved in differnet files, set it to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
TypeError: If `main_program` is not an instance of Program nor None.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
|
|
# The first usage: using `main_program` to specify variables
|
|
def name_has_fc(var):
|
|
res = "fc" in var.name
|
|
return res
|
|
|
|
prog = fluid.default_main_program()
|
|
fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
|
|
vars=None)
|
|
# All variables in `main_program` whose name includes "fc" will be loaded.
|
|
# And all the variables are supposed to have been saved in differnet files.
|
|
|
|
|
|
# The second usage: using `vars` to specify variables
|
|
var_list = [var_a, var_b, var_c]
|
|
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
|
|
filename="vars_file")
|
|
# var_a, var_b and var_c will be loaded. And they are supposed to haven
|
|
# been saved in the same file named 'var_file' in the path "./my_paddle_model".
|
|
"""
|
|
if vars is None:
|
|
if main_program is None:
|
|
main_program = default_main_program()
|
|
if not isinstance(main_program, Program):
|
|
raise TypeError("program's type should be Program")
|
|
|
|
load_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
vars=filter(predicate, main_program.list_vars()),
|
|
filename=filename)
|
|
else:
|
|
load_prog = Program()
|
|
load_block = load_prog.global_block()
|
|
|
|
load_var_map = {}
|
|
for each_var in vars:
|
|
assert isinstance(each_var, Variable)
|
|
if each_var.type == core.VarDesc.VarType.RAW:
|
|
continue
|
|
new_var = _clone_var_in_block_(load_block, each_var)
|
|
if filename is None:
|
|
load_block.append_op(
|
|
type='load',
|
|
inputs={},
|
|
outputs={'Out': [new_var]},
|
|
attrs={'file_path': os.path.join(dirname, new_var.name)})
|
|
else:
|
|
load_var_map[new_var.name] = new_var
|
|
|
|
if filename is not None:
|
|
load_var_list = []
|
|
for name in sorted(load_var_map.keys()):
|
|
load_var_list.append(load_var_map[name])
|
|
|
|
load_block.append_op(
|
|
type='load_combine',
|
|
inputs={},
|
|
outputs={"Out": load_var_list},
|
|
attrs={'file_path': os.path.join(dirname, filename)})
|
|
|
|
executor.run(load_prog)
|
|
|
|
|
|
def load_params(executor, dirname, main_program=None, filename=None):
|
|
"""
|
|
This function filters out all parameters from the give `main_program`
|
|
and then trys to load these parameters from the folder `dirname` or
|
|
the file `filename`.
|
|
|
|
Use the `dirname` to specify the folder where parameters were saved. If
|
|
parameters were saved in separate files in the folder `dirname`, set
|
|
`filename` None; if all parameters were saved in a single file, use
|
|
`filename` to specify the file name.
|
|
|
|
NOTICE: Some variables are not Parameter while they are necessary for
|
|
training. So you can NOT save and continue your training just by
|
|
`save_params()` and `load_params()`. Please use `save_persistables()`
|
|
and `load_persistables()` instead.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for loading parameters.
|
|
dirname(str): The directory path.
|
|
main_program(Program|None): The program whose parameters will be
|
|
loaded. If it is None, the default
|
|
main program will be used automatically.
|
|
Default: None
|
|
filename(str|None): The file which saved all parameters. If parameters
|
|
were saved in differnet files, set it to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
prog = fluid.default_main_program()
|
|
fluid.io.load_params(executor=exe, dirname=param_path,
|
|
main_program=None)
|
|
"""
|
|
load_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
main_program=main_program,
|
|
predicate=is_parameter,
|
|
filename=filename)
|
|
|
|
|
|
def load_persistables(executor, dirname, main_program=None, filename=None):
|
|
"""
|
|
This function filters out all variables with `persistable==True` from the
|
|
give `main_program` and then trys to load these variables from the folder
|
|
`dirname` or the file `filename`.
|
|
|
|
Use the `dirname` to specify the folder where persistable variables were
|
|
saved. If variables were saved in separate files, set `filename` None;
|
|
if all variables were saved in a single file, use `filename` to specify
|
|
the file name.
|
|
|
|
Args:
|
|
executor(Executor): The executor to run for loading persistable variables.
|
|
dirname(str): The directory path.
|
|
main_program(Program|None): The program whose persistbale variables will
|
|
be loaded. If it is None, the default main
|
|
program will be used automatically.
|
|
Default: None
|
|
filename(str|None): The file which saved all variables. If variables were
|
|
saved in differnet files, set it to None.
|
|
Default: None
|
|
|
|
Returns:
|
|
None
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param_path = "./my_paddle_model"
|
|
prog = fluid.default_main_program()
|
|
fluid.io.load_persistables(executor=exe, dirname=param_path,
|
|
main_program=None)
|
|
"""
|
|
load_vars(
|
|
executor,
|
|
dirname=dirname,
|
|
main_program=main_program,
|
|
predicate=is_persistable,
|
|
filename=filename)
|
|
|
|
|
|
def get_inference_program(target_vars, main_program=None):
|
|
if main_program is None:
|
|
main_program = default_main_program()
|
|
if not isinstance(target_vars, list):
|
|
target_vars = [target_vars]
|
|
vars = []
|
|
for var in target_vars:
|
|
if isinstance(var, Evaluator):
|
|
vars.extend(var.states)
|
|
vars.extend(var.metrics)
|
|
else:
|
|
vars.append(var)
|
|
pruned_program = main_program.prune(targets=vars)
|
|
inference_program = pruned_program.inference_optimize()
|
|
return inference_program
|
|
|
|
|
|
def prepend_feed_ops(inference_program,
|
|
feed_target_names,
|
|
feed_holder_name='feed'):
|
|
if len(feed_target_names) == 0:
|
|
return
|
|
|
|
global_block = inference_program.global_block()
|
|
feed_var = global_block.create_var(
|
|
name=feed_holder_name,
|
|
type=core.VarDesc.VarType.FEED_MINIBATCH,
|
|
persistable=True)
|
|
|
|
for i, name in enumerate(feed_target_names):
|
|
out = global_block.var(name)
|
|
global_block._prepend_op(
|
|
type='feed',
|
|
inputs={'X': [feed_var]},
|
|
outputs={'Out': [out]},
|
|
attrs={'col': i})
|
|
|
|
|
|
def append_fetch_ops(inference_program,
|
|
fetch_target_names,
|
|
fetch_holder_name='fetch'):
|
|
global_block = inference_program.global_block()
|
|
fetch_var = global_block.create_var(
|
|
name=fetch_holder_name,
|
|
type=core.VarDesc.VarType.FETCH_LIST,
|
|
persistable=True)
|
|
|
|
for i, name in enumerate(fetch_target_names):
|
|
global_block.append_op(
|
|
type='fetch',
|
|
inputs={'X': [name]},
|
|
outputs={'Out': [fetch_var]},
|
|
attrs={'col': i})
|
|
|
|
|
|
def save_inference_model(dirname,
|
|
feeded_var_names,
|
|
target_vars,
|
|
executor,
|
|
main_program=None,
|
|
model_filename=None,
|
|
params_filename=None):
|
|
"""
|
|
Prune the given `main_program` to build a new program especially for inference,
|
|
and then save it and all related parameters to given `dirname` by the `executor`.
|
|
|
|
Args:
|
|
dirname(str): The directory path to save the inference model.
|
|
feeded_var_names(list[str]): Names of variables that need to be feeded data
|
|
during inference.
|
|
target_vars(list[Variable]): Variables from which we can get inference
|
|
results.
|
|
executor(Executor): The executor that saves the inference model.
|
|
main_program(Program|None): The original program, which will be pruned to
|
|
build the inference model. If is setted None,
|
|
the default main program will be used.
|
|
Default: None.
|
|
model_filename(str|None): The name of file to save the inference program
|
|
itself. If is setted None, a default filename
|
|
`__model__` will be used.
|
|
params_filename(str|None): The name of file to save all related parameters.
|
|
If it is setted None, parameters will be saved
|
|
in separate files .
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
ValueError: If `feed_var_names` is not a list of basestring.
|
|
ValueError: If `target_vars` is not a list of Variable.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
path = "./infer_model"
|
|
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
|
|
target_vars=[predict_var], executor=exe)
|
|
|
|
# In this exsample, the function will prune the default main program
|
|
# to make it suitable for infering the `predict_var`. The pruned
|
|
# inference program is going to be saved in the "./infer_model/__model__"
|
|
# and parameters are going to be saved in separate files under folder
|
|
# "./infer_model".
|
|
|
|
"""
|
|
if isinstance(feeded_var_names, basestring):
|
|
feeded_var_names = [feeded_var_names]
|
|
else:
|
|
if len(feeded_var_names) > 0:
|
|
if not (bool(feeded_var_names) and all(
|
|
isinstance(name, basestring) for name in feeded_var_names)):
|
|
raise ValueError("'feed_var_names' should be a list of str.")
|
|
|
|
if isinstance(target_vars, Variable):
|
|
target_vars = [target_vars]
|
|
else:
|
|
if not (bool(target_vars) and all(
|
|
isinstance(var, Variable) for var in target_vars)):
|
|
raise ValueError("'target_vars' should be a list of Variable.")
|
|
|
|
if main_program is None:
|
|
main_program = default_main_program()
|
|
copy_program = main_program.clone()
|
|
|
|
if not os.path.isdir(dirname):
|
|
os.makedirs(dirname)
|
|
|
|
# Clear the is_target information and remove the existed feed and fetch op
|
|
global_block = copy_program.global_block()
|
|
for i, op in enumerate(global_block.ops):
|
|
op.desc.set_is_target(False)
|
|
if op.type == "feed" or op.type == "fetch":
|
|
global_block._remove_op(i)
|
|
copy_program.desc.flush()
|
|
|
|
pruned_program = copy_program.prune(targets=target_vars)
|
|
inference_program = pruned_program.inference_optimize()
|
|
fetch_var_names = [v.name for v in target_vars]
|
|
|
|
prepend_feed_ops(inference_program, feeded_var_names)
|
|
append_fetch_ops(inference_program, fetch_var_names)
|
|
|
|
if model_filename is not None:
|
|
model_filename = os.path.basename(model_filename)
|
|
else:
|
|
model_filename = "__model__"
|
|
model_filename = os.path.join(dirname, model_filename)
|
|
|
|
if params_filename is not None:
|
|
params_filename = os.path.basename(params_filename)
|
|
|
|
with open(model_filename, "wb") as f:
|
|
f.write(inference_program.desc.serialize_to_string())
|
|
|
|
save_persistables(executor, dirname, inference_program, params_filename)
|
|
|
|
|
|
def load_inference_model(dirname,
|
|
executor,
|
|
model_filename=None,
|
|
params_filename=None):
|
|
"""
|
|
Load inference model from a directory
|
|
|
|
Args:
|
|
dirname(str): The directory path
|
|
executor(Executor): The executor to run for loading inference model.
|
|
model_filename(str|None): The name of file to load inference program.
|
|
If it is None, the default filename
|
|
'__model__' will be used.
|
|
Default: None
|
|
params_filename(str|None): The name of file to load all parameters.
|
|
It is only used for the case that all
|
|
parameters were saved in a single binary
|
|
file. If parameters were saved in separate
|
|
files, set it as 'None'.
|
|
|
|
Returns:
|
|
tuple: The return of this function is a tuple with three elements:
|
|
(program, feed_target_names, fetch_targets). The `program` is a
|
|
Program, it's the program for inference. The `feed_target_names` is
|
|
a list of str, it contains Names of variables that need to feed
|
|
data in the inference program. The `fetch_targets` is a list of
|
|
Variable. It contains variables from which we can get inference
|
|
results.
|
|
|
|
Raises:
|
|
ValueError: If `dirname` is not a existing directory.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
path = "./infer_model"
|
|
[inference_program, feed_target_names, fetch_targets] =
|
|
fluid.io.load_inference_model(dirname=path, executor=exe)
|
|
results = exe.run(inference_program,
|
|
feed={feed_target_names[0]: tensor_img},
|
|
fetch_list=fetch_targets)
|
|
|
|
# In this exsample, the inference program was saved in the
|
|
# "./infer_model/__model__" and parameters were saved in
|
|
# separate files in ""./infer_model".
|
|
# After getting inference program, feed target names and
|
|
# fetch targets, we can use an Executor to run the inference
|
|
# program to get the inference result.
|
|
|
|
"""
|
|
if not os.path.isdir(dirname):
|
|
raise ValueError("There is no directory named '%s'", dirname)
|
|
|
|
if model_filename is not None:
|
|
model_filename = os.path.basename(model_filename)
|
|
else:
|
|
model_filename = "__model__"
|
|
model_filename = os.path.join(dirname, model_filename)
|
|
|
|
if params_filename is not None:
|
|
params_filename = os.path.basename(params_filename)
|
|
|
|
with open(model_filename, "rb") as f:
|
|
program_desc_str = f.read()
|
|
|
|
program = Program.parse_from_string(program_desc_str)
|
|
load_persistables(executor, dirname, program, params_filename)
|
|
|
|
feed_target_names = program.desc.get_feed_target_names()
|
|
fetch_target_names = program.desc.get_fetch_target_names()
|
|
fetch_targets = [
|
|
program.global_block().var(name) for name in fetch_target_names
|
|
]
|
|
|
|
return [program, feed_target_names, fetch_targets]
|
|
|
|
|
|
def get_parameter_value(para, executor):
|
|
"""
|
|
Get the LoDTensor value of the given parameter.
|
|
|
|
Args:
|
|
para(Parameter): The parameter to get value from.
|
|
executor(Executor): The executor to run for retrieving the value.
|
|
|
|
Returns:
|
|
numpy.array: The given parameter's values.
|
|
|
|
Raises:
|
|
AssertionError: If the `para` is not an instance of Parameter.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
param = fluid.default_main_program().global_block().var('fc.w')
|
|
p = fluid.io.get_parameter_value(param, exe)
|
|
|
|
"""
|
|
assert is_parameter(para)
|
|
|
|
get_program = Program()
|
|
block = get_program.global_block()
|
|
new_var = _clone_var_in_block_(block, para)
|
|
return executor.run(get_program, feed={}, fetch_list=[new_var])[0]
|
|
|
|
|
|
def get_parameter_value_by_name(name, executor, program=None):
|
|
"""
|
|
Get the LoDTensor value of a certain parameter by its name.
|
|
|
|
Args:
|
|
name(str): The parameter's name.
|
|
executor(Executor): The executor to run for retrieving the value.
|
|
program(Program | None): The program where to find the parameter.
|
|
If it's set to be None, the function will
|
|
try to find the parameter in the default
|
|
main program.
|
|
|
|
Returns:
|
|
numpy.array: The parameter's values.
|
|
|
|
Raises:
|
|
TypeError: If given `name` is not an instance of basestring.
|
|
TypeError: If the parameter with the given name doesn't exist.
|
|
AssertionError: If there is a varibale named `name` in the
|
|
given program but it is not a Parameter.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
p = fluid.io.get_parameter_value('fc.w', exe)
|
|
"""
|
|
if program is None:
|
|
program = default_main_program()
|
|
var = program.global_block().var(name)
|
|
return get_parameter_value(var, executor)
|
|
|
|
|
|
def get_test_program(filelist, program=None, startup_program=None):
|
|
"""
|
|
Transpile current train program to a program to read test dataset
|
|
if the program is using reader ops like "open_files_op".
|
|
"""
|
|
|
|
def _copy_reader_var_(block, var, new_name=None):
|
|
if new_name == None:
|
|
new_name = var.name
|
|
new_var = block.create_var(
|
|
name=str(new_name), type=core.VarDesc.VarType.READER)
|
|
new_var.desc.set_shapes(var.desc.shapes())
|
|
new_var.desc.set_dtypes(var.desc.dtypes())
|
|
new_var.persistable = True
|
|
return new_var
|
|
|
|
def _get_test_reader_name(train_reader_name):
|
|
return train_reader_name + "_test"
|
|
|
|
def _is_reader_op(op):
|
|
block = op.block
|
|
if "Out" in op.output_names:
|
|
reader_out = block.vars[op.output("Out")[0]]
|
|
if reader_out.type == core.VarDesc.VarType.READER:
|
|
return True
|
|
return False
|
|
|
|
if program == None:
|
|
program = default_main_program()
|
|
if startup_program == None:
|
|
startup_program = default_startup_program()
|
|
startup_block = startup_program.global_block()
|
|
|
|
# 1. find out the orignal reader var name
|
|
startup_reader_op_list = []
|
|
|
|
for op in startup_block.ops:
|
|
if _is_reader_op(op):
|
|
startup_reader_op_list.append(op)
|
|
|
|
if len(startup_reader_op_list) == 0:
|
|
return program
|
|
|
|
root_reader_op = startup_reader_op_list[0]
|
|
train_test_reader_map = {}
|
|
# 2. add operators to startup to read open and read test data files
|
|
for op in startup_reader_op_list:
|
|
assert (len(op.output("Out")) == 1)
|
|
train_reader_name = op.output("Out")[0]
|
|
train_reader = startup_block.vars[train_reader_name]
|
|
test_reader = _copy_reader_var_(
|
|
startup_block,
|
|
train_reader,
|
|
new_name=_get_test_reader_name(train_reader_name))
|
|
train_test_reader_map[train_reader.name] = test_reader
|
|
|
|
test_op_inputs = {}
|
|
for name in op.input_names:
|
|
train_arg_names = op.input(name)
|
|
test_arg_vars = []
|
|
for arg_name in train_arg_names:
|
|
arg_var = train_test_reader_map[
|
|
arg_name] if name == "UnderlyingReader" else startup_block.vars[
|
|
arg_name]
|
|
test_arg_vars.append(arg_var)
|
|
test_op_inputs[name] = test_arg_vars
|
|
|
|
test_op = startup_block.append_op(
|
|
type=op.type,
|
|
inputs=test_op_inputs,
|
|
outputs={'Out': [test_reader]},
|
|
attrs=op.attrs)
|
|
# root reader op's filelist attr for read test files
|
|
if op.type == root_reader_op.type:
|
|
test_op.set_attr("file_names", filelist)
|
|
if op.type == "create_multi_pass_reader":
|
|
test_op.set_attr("pass_num", 1)
|
|
|
|
# 3. rename reader vars in inference program to different name
|
|
# to avoid read from train data.
|
|
main_block = program.global_block()
|
|
for var in main_block.vars.values():
|
|
if var.type == core.VarDesc.VarType.READER:
|
|
main_block._rename_var(
|
|
str(var.name), str(_get_test_reader_name(var.name)))
|
|
|
|
for op in main_block.ops:
|
|
if op.type == root_reader_op.type:
|
|
test_op.set_attr("file_names", filelist)
|
|
if op.type == "create_multi_pass_reader":
|
|
test_op.set_attr("pass_num", 1)
|
|
|
|
startup_program._sync_with_cpp()
|
|
program._sync_with_cpp()
|
|
|
|
return program
|