You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/capi/pd_predictor.cc

173 lines
6.2 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <map>
#include <memory>
#include <numeric>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;
namespace {
#define _DataTypeHelper_(CALLBACK, CPP_TYPE, PD_TYPE) \
CALLBACK(CPP_TYPE, PD_DataType::PD_TYPE);
#define _DataType_(CALLBACK) \
_DataTypeHelper_(CALLBACK, float, PD_FLOAT32); \
_DataTypeHelper_(CALLBACK, int32_t, PD_INT32); \
_DataTypeHelper_(CALLBACK, int64_t, PD_INT64); \
_DataTypeHelper_(CALLBACK, uint8_t, PD_UINT8);
template <typename Visitor>
inline void VisitDataType(PD_DataType type, Visitor visitor) {
#define VisitDataTypeCallback(CPP_TYPE, PD_TYPE) \
do { \
if (type == PD_TYPE) { \
visitor.template apply<CPP_TYPE>(); \
return; \
} \
} while (0)
_DataType_(VisitDataTypeCallback);
#undef VisitDataTypeCallback
PADDLE_THROW(
paddle::platform::errors::InvalidArgument("Unsupported data type."));
}
struct PD_ZeroCopyFunctor {
PD_ZeroCopyData* output_i;
paddle::ZeroCopyTensor* output_t;
PD_ZeroCopyFunctor(PD_ZeroCopyData* output_i_,
paddle::ZeroCopyTensor* output_t_)
: output_i(output_i_), output_t(output_t_) {}
template <typename OutT>
void apply() {
std::vector<OutT> out_data;
int out_num =
std::accumulate(output_i->shape, output_i->shape + output_i->shape_size,
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output_i->data = reinterpret_cast<void*>(malloc(out_num * sizeof(OutT)));
memmove(static_cast<OutT*>(output_i->data), out_data.data(),
out_num * sizeof(OutT));
}
};
} // namespace
extern "C" {
bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
int in_size, PD_Tensor** output_data, int* out_size,
int batch_size) {
PADDLE_ENFORCE_NOT_NULL(config);
VLOG(3) << "Predoctor: PD_PredictorRun. ";
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
predictors;
if (!predictors.count(config->config.model_dir())) {
predictors[config->config.model_dir()] =
paddle::CreatePaddlePredictor(config->config);
}
auto& predictor = predictors[config->config.model_dir()];
std::vector<paddle::PaddleTensor> in;
for (int i = 0; i < in_size; ++i) {
in.emplace_back(inputs->tensor);
}
std::vector<paddle::PaddleTensor> out;
VLOG(3) << "Run predictor in CAPI encapsulation. ";
if (predictor->Run(in, &out, batch_size)) {
int osize = out.size();
*output_data = new PD_Tensor[osize];
for (int i = 0; i < osize; ++i) {
output_data[i]->tensor = out[i];
}
*out_size = osize;
return true;
}
return false;
}
bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
PD_ZeroCopyData* inputs, int in_size,
PD_ZeroCopyData** output, int* out_size) {
PADDLE_ENFORCE_NOT_NULL(config);
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
predictors;
if (!predictors.count(config->config.model_dir())) {
predictors[config->config.model_dir()] =
paddle::CreatePaddlePredictor(config->config);
}
auto& predictor = predictors[config->config.model_dir()];
auto input_names = predictor->GetInputNames();
VLOG(3) << "The inputs' size is " << input_names.size();
PADDLE_ENFORCE_EQ(
input_names.size(), in_size,
"The number of input and the number of model's input must match. ");
for (int i = 0; i < in_size; ++i) {
auto input_t = predictor->GetInputTensor(inputs[i].name);
std::vector<int> tensor_shape;
tensor_shape.assign(inputs[i].shape,
inputs[i].shape + inputs[i].shape_size);
input_t->Reshape(tensor_shape);
switch (inputs[i].dtype) {
case PD_FLOAT32:
input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
break;
case PD_INT32:
input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
break;
case PD_INT64:
input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
break;
case PD_UINT8:
input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
break;
default:
CHECK(false) << "Unsupport data type.";
break;
}
}
VLOG(3) << "Run ZeroCopyRun() in CAPI encapsulation. ";
CHECK(predictor->ZeroCopyRun());
auto output_names = predictor->GetOutputNames();
int osize = output_names.size();
*out_size = osize;
*output = new PD_ZeroCopyData[osize];
VLOG(3) << "The output size is " << osize;
for (int i = 0; i < *out_size; ++i) {
auto& output_i = (*output)[i];
output_i.name = new char[output_names[i].length() + 1];
snprintf(output_i.name, output_names[i].length() + 1, "%s",
output_names[i].c_str());
auto output_t = predictor->GetOutputTensor(output_names[i]);
output_i.dtype = ConvertToPDDataType(output_t->type());
std::vector<int> output_shape = output_t->shape();
output_i.shape = new int[output_shape.size()];
memmove(output_i.shape, output_shape.data(),
output_shape.size() * sizeof(int));
output_i.shape_size = output_shape.size();
VisitDataType(output_i.dtype,
PD_ZeroCopyFunctor(&output_i, std::move(output_t.get())));
}
return true;
}
} // extern "C"