You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.2 KiB
227 lines
7.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
|
|
class TestReshapeOp(OpTest):
|
|
def setUp(self):
|
|
self.init_data()
|
|
self.op_type = "reshape2"
|
|
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
|
|
self.attrs = {"shape": self.new_shape}
|
|
self.outputs = {
|
|
"Out": self.inputs["X"].reshape(self.infered_shape),
|
|
'XShape': np.random.random(self.ori_shape).astype("float32")
|
|
}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = (2, 25)
|
|
self.new_shape = (5, 10)
|
|
self.infered_shape = (5, 10)
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output(no_check_set=['XShape'])
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestReshapeOpDimInfer1(TestReshapeOp):
|
|
def init_data(self):
|
|
self.ori_shape = (5, 10)
|
|
self.new_shape = (5, -1, 5)
|
|
self.infered_shape = (5, -1, 5)
|
|
|
|
|
|
class TestReshapeOpDimInfer2(TestReshapeOp):
|
|
def init_data(self):
|
|
self.ori_shape = (2, 2, 6)
|
|
self.new_shape = (2, 0, 3, -1)
|
|
self.infered_shape = (2, 2, 3, -1)
|
|
|
|
|
|
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
|
|
class TestReshapeOpWithInputShape(OpTest):
|
|
def setUp(self):
|
|
self.init_data()
|
|
self.op_type = "reshape2"
|
|
|
|
self.inputs = {
|
|
"X": np.random.random(self.ori_shape).astype("float32"),
|
|
"Shape": np.array(
|
|
self.actual_shape, dtype="int32")
|
|
}
|
|
self.attrs = {"shape": self.new_shape}
|
|
self.outputs = {
|
|
"Out": self.inputs["X"].reshape(self.actual_shape),
|
|
'XShape': np.random.random(self.ori_shape).astype("float32")
|
|
}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = (6, 5)
|
|
self.new_shape = (0, -1, 5)
|
|
self.actual_shape = (2, 3, 5)
|
|
|
|
def test_check_output(self):
|
|
self.check_output(no_check_set=['XShape'])
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
|
|
class TestReshapeOp_attr_ShapeTensor(OpTest):
|
|
def setUp(self):
|
|
self.init_data()
|
|
self.op_type = "reshape2"
|
|
|
|
shape_tensor = []
|
|
for index, ele in enumerate(self.new_shape):
|
|
shape_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype('int32') * ele))
|
|
|
|
self.inputs = {
|
|
"X": np.random.random(self.ori_shape).astype("float32"),
|
|
'ShapeTensor': shape_tensor
|
|
}
|
|
self.attrs = {'shape': self.shape}
|
|
self.outputs = {
|
|
"Out": self.inputs["X"].reshape(self.infered_shape),
|
|
'XShape': np.random.random(self.ori_shape).astype("float32")
|
|
}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = (2, 25)
|
|
self.new_shape = (5, 10)
|
|
self.infered_shape = (5, 10)
|
|
self.shape = (-1, -1)
|
|
|
|
def test_check_output(self):
|
|
self.check_output(no_check_set=['XShape'])
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
|
|
def init_data(self):
|
|
self.ori_shape = (5, 10)
|
|
self.new_shape = (5, -1, 5)
|
|
self.infered_shape = (5, -1, 5)
|
|
self.shape = (5, -1, -1)
|
|
|
|
|
|
class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
|
|
def init_data(self):
|
|
self.ori_shape = (2, 2, 6)
|
|
self.new_shape = (2, 0, 3, -1)
|
|
self.infered_shape = (2, 2, 3, -1)
|
|
self.shape = (2, 0, 3, -1)
|
|
|
|
|
|
# Situation 4: have shape(Tensor), no actual shape(Tensor)
|
|
class TestReshapeOp_attr_OnlyShape(OpTest):
|
|
def setUp(self):
|
|
self.init_data()
|
|
self.op_type = "reshape2"
|
|
|
|
self.inputs = {
|
|
"X": np.random.random(self.ori_shape).astype("float32"),
|
|
"Shape": np.array(
|
|
self.new_shape, dtype="int32")
|
|
}
|
|
self.attrs = {}
|
|
self.outputs = {
|
|
"Out": self.inputs["X"].reshape(self.infered_shape),
|
|
'XShape': np.random.random(self.ori_shape).astype("float32")
|
|
}
|
|
|
|
def init_data(self):
|
|
self.ori_shape = (2, 25)
|
|
self.new_shape = (5, 10)
|
|
self.infered_shape = (5, 10)
|
|
|
|
def test_check_output(self):
|
|
self.check_output(no_check_set=['XShape'])
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
|
|
def init_data(self):
|
|
self.ori_shape = (5, 10)
|
|
self.new_shape = (5, -1, 5)
|
|
self.infered_shape = (5, -1, 5)
|
|
self.shape = (5, -1, -1)
|
|
|
|
|
|
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
|
|
def init_data(self):
|
|
self.ori_shape = (2, 2, 6)
|
|
self.new_shape = (2, 0, 3, -1)
|
|
self.infered_shape = (2, 2, 3, -1)
|
|
self.shape = (2, 0, 3, -1)
|
|
|
|
|
|
# Test python API
|
|
class TestReshapeAPI(OpTest):
|
|
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
|
|
def test_1(self):
|
|
input = np.random.random([2, 25]).astype("float32")
|
|
shape = [2, 5, 5]
|
|
positive_five = fluid.layers.fill_constant([1], "int32", 5)
|
|
x = fluid.layers.data(
|
|
name="x", shape=[2, 25], append_batch_size=False, dtype="float32")
|
|
|
|
actual_shape = fluid.layers.data(
|
|
name="shape",
|
|
shape=[1, 3],
|
|
append_batch_size=False,
|
|
dtype="float32")
|
|
|
|
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
|
|
out_1 = fluid.layers.reshape(x, shape)
|
|
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
|
|
out_2 = fluid.layers.reshape(x, shape=shape, actual_shape=actual_shape)
|
|
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
|
|
out_3 = fluid.layers.reshape(x, shape=[positive_five, 10])
|
|
# Situation 4: have shape(Tensor), no actual shape(Tensor)
|
|
out_4 = fluid.layers.reshape(x, shape=actual_shape)
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
res_1, res_2, res_3, res_4 = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={"x": input,
|
|
"shape": np.array([2, 5, 5]).astype("int32")},
|
|
fetch_list=[out_1, out_2, out_3, out_4])
|
|
|
|
assert np.array_equal(res_1, input.reshape(shape))
|
|
assert np.array_equal(res_2, input.reshape(shape))
|
|
assert np.array_equal(res_3, input.reshape([5, 10]))
|
|
assert np.array_equal(res_4, input.reshape(shape))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|