You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
202 lines
6.0 KiB
202 lines
6.0 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from op_test import OpTest
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
def strided_slice_native_forward(input, axes, starts, ends, strides):
|
|
dim = input.ndim
|
|
start = []
|
|
end = []
|
|
stride = []
|
|
for i in range(dim):
|
|
start.append(0)
|
|
end.append(input.shape[i])
|
|
stride.append(1)
|
|
|
|
for i in range(len(axes)):
|
|
start[axes[i]] = starts[i]
|
|
end[axes[i]] = ends[i]
|
|
stride[axes[i]] = strides[i]
|
|
|
|
result = {
|
|
1: lambda input, start, end, stride: input[start[0]:end[0]:stride[0]],
|
|
2: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
|
|
start[1]:end[1]:stride[1]],
|
|
3: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
|
|
start[1]:end[1]:stride[1], start[2]:end[2]:stride[2]],
|
|
4: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
|
|
start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3]],
|
|
5: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
|
|
start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], start[4]:end[4]:stride[4]],
|
|
6: lambda input, start, end, stride: input[start[0]:end[0]:stride[0], \
|
|
start[1]:end[1]:stride[1], start[2]:end[2]:stride[2], start[3]:end[3]:stride[3], \
|
|
start[4]:end[4]:stride[4], start[5]:end[5]:stride[5]]
|
|
}[dim](input, start, end, stride)
|
|
|
|
return result
|
|
|
|
|
|
class TestStrideSliceOp(OpTest):
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.op_type = 'strided_slice'
|
|
self.output = strided_slice_native_forward(
|
|
self.input, self.axes, self.starts, self.ends, self.strides)
|
|
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.output}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'strides': self.strides
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(set(['Input']), 'Out')
|
|
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(6)
|
|
self.axes = [0]
|
|
self.starts = [-4]
|
|
self.ends = [-3]
|
|
self.strides = [1]
|
|
|
|
|
|
class TestStrideSliceOp1(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(6)
|
|
self.axes = [0]
|
|
self.starts = [3]
|
|
self.ends = [8]
|
|
self.strides = [1]
|
|
|
|
|
|
class TestStrideSliceOp2(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(6)
|
|
self.axes = [0]
|
|
self.starts = [5]
|
|
self.ends = [0]
|
|
self.strides = [-1]
|
|
|
|
|
|
class TestStrideSliceOp3(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(6)
|
|
self.axes = [0]
|
|
self.starts = [-1]
|
|
self.ends = [-3]
|
|
self.strides = [-1]
|
|
|
|
|
|
class TestStrideSliceOp4(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 4, 6)
|
|
self.axes = [0, 1, 2]
|
|
self.starts = [0, -1, 0]
|
|
self.ends = [2, -3, 5]
|
|
self.strides = [1, -1, 1]
|
|
|
|
|
|
class TestStrideSliceOp5(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3)
|
|
self.axes = [0, 1, 2]
|
|
self.starts = [1, 0, 0]
|
|
self.ends = [2, 1, 3]
|
|
self.strides = [1, 1, 1]
|
|
|
|
|
|
class TestStrideSliceOp6(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3)
|
|
self.axes = [0, 1, 2]
|
|
self.starts = [1, -1, 0]
|
|
self.ends = [2, -3, 3]
|
|
self.strides = [1, -1, 1]
|
|
|
|
|
|
class TestStrideSliceOp7(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3)
|
|
self.axes = [0, 1, 2]
|
|
self.starts = [1, 0, 0]
|
|
self.ends = [2, 2, 3]
|
|
self.strides = [1, 1, 1]
|
|
|
|
|
|
class TestStrideSliceOp8(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(1, 3, 1)
|
|
self.axes = [1]
|
|
self.starts = [1]
|
|
self.ends = [2]
|
|
self.strides = [1]
|
|
|
|
|
|
class TestStrideSliceOp9(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(1, 3, 1)
|
|
self.axes = [1]
|
|
self.starts = [-1]
|
|
self.ends = [-2]
|
|
self.strides = [-1]
|
|
|
|
|
|
class TestStrideSliceOp10(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3)
|
|
self.axes = [0, 1]
|
|
self.starts = [1, 0]
|
|
self.ends = [2, 2]
|
|
self.strides = [1, 1]
|
|
|
|
|
|
class TestStrideSliceOp11(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3, 4)
|
|
self.axes = [0, 1, 2, 3]
|
|
self.starts = [1, 0, 0, 0]
|
|
self.ends = [2, 2, 3, 4]
|
|
self.strides = [1, 1, 1, 2]
|
|
|
|
|
|
class TestStrideSliceOp12(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3, 4, 5)
|
|
self.axes = [0, 1, 2, 3, 4]
|
|
self.starts = [1, 0, 0, 0, 0]
|
|
self.ends = [2, 2, 3, 4, 4]
|
|
self.strides = [1, 1, 1, 1, 1]
|
|
|
|
|
|
class TestStrideSliceOp13(TestStrideSliceOp):
|
|
def initTestCase(self):
|
|
self.input = np.random.rand(3, 3, 3, 6, 7, 8)
|
|
self.axes = [0, 1, 2, 3, 4, 5]
|
|
self.starts = [1, 0, 0, 0, 1, 2]
|
|
self.ends = [2, 2, 3, 1, 2, 8]
|
|
self.strides = [1, 1, 1, 1, 1, 2]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|