You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.5 KiB
170 lines
5.5 KiB
from paddle.v2.framework.framework import Variable, OpProtoHolder, g_program, g_init_program
|
|
import paddle.v2.framework.core as core
|
|
import copy
|
|
import itertools
|
|
|
|
|
|
def unique_name(prefix):
|
|
uid = core.unique_integer() # unique during whole process.
|
|
return "_".join([prefix, str(uid)])
|
|
|
|
|
|
class LayerHelper(object):
|
|
def __init__(self, layer_type, **kwargs):
|
|
self.kwargs = kwargs
|
|
self.layer_type = layer_type
|
|
name = self.kwargs.get('name', None)
|
|
if name is None:
|
|
self.kwargs['name'] = unique_name(self.layer_type)
|
|
|
|
@property
|
|
def name(self):
|
|
return self.kwargs['name']
|
|
|
|
@property
|
|
def program(self):
|
|
prog = self.kwargs.get('program', None)
|
|
if prog is None:
|
|
return g_program
|
|
else:
|
|
return prog
|
|
|
|
@property
|
|
def init_program(self):
|
|
prog = self.kwargs.get('init_program', None)
|
|
if prog is None:
|
|
return g_init_program
|
|
else:
|
|
return prog
|
|
|
|
def append_op(self, *args, **kwargs):
|
|
return self.program.current_block().append_op(*args, **kwargs)
|
|
|
|
def multiple_input(self, input_param_name='input'):
|
|
inputs = self.kwargs.get(input_param_name, [])
|
|
type_error = TypeError(
|
|
"Input of {0} layer should be Variable or sequence of Variable".
|
|
format(self.layer_type))
|
|
if isinstance(inputs, Variable):
|
|
inputs = [inputs]
|
|
elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
|
|
raise type_error
|
|
else:
|
|
for each in inputs:
|
|
if not isinstance(each, Variable):
|
|
raise type_error
|
|
return inputs
|
|
|
|
def input(self, input_param_name='input'):
|
|
inputs = self.multiple_input(input_param_name)
|
|
if len(inputs) != 1:
|
|
raise "{0} layer only takes one input".format(self.layer_type)
|
|
return inputs[0]
|
|
|
|
@property
|
|
def param_attr(self):
|
|
default = {
|
|
'name': None,
|
|
'init_attr': {
|
|
'type': 'uniform_random',
|
|
'min': -1.0,
|
|
'max': 1.0
|
|
}
|
|
}
|
|
actual = self.kwargs.get('param_attr', None)
|
|
return actual if actual is not None else default
|
|
|
|
def bias_attr(self):
|
|
bias_attr = self.kwargs.get('bias_attr', None)
|
|
if bias_attr is True:
|
|
bias_attr = {
|
|
'name': None,
|
|
'init_attr': {
|
|
'type': 'fill_constant',
|
|
'value': 0.0
|
|
}
|
|
}
|
|
return bias_attr
|
|
|
|
def multiple_param_attr(self, length):
|
|
param_attr = self.param_attr
|
|
if isinstance(param_attr, dict):
|
|
param_attr = [param_attr]
|
|
|
|
if len(param_attr) != 1 and len(param_attr) != length:
|
|
raise ValueError("parameter number mismatch")
|
|
elif len(param_attr) == 1 and length != 1:
|
|
tmp = [None] * length
|
|
for i in xrange(length):
|
|
tmp[i] = copy.deepcopy(param_attr[0])
|
|
param_attr = tmp
|
|
return param_attr
|
|
|
|
def iter_inputs_and_params(self, input_param_name='input'):
|
|
inputs = self.multiple_input(input_param_name)
|
|
param_attrs = self.multiple_param_attr(len(inputs))
|
|
for ipt, param_attr in itertools.izip(inputs, param_attrs):
|
|
yield ipt, param_attr
|
|
|
|
def input_dtype(self, input_param_name='input'):
|
|
inputs = self.multiple_input(input_param_name)
|
|
dtype = None
|
|
for each in inputs:
|
|
if dtype is None:
|
|
dtype = each.data_type
|
|
elif dtype != each.data_type:
|
|
raise ValueError("Data Type mismatch")
|
|
return dtype
|
|
|
|
def create_parameter(self, attr, shape, dtype, suffix='w'):
|
|
if attr['name'] is None:
|
|
attr['name'] = unique_name(".".join([self.name, suffix]))
|
|
self.init_program.global_block().create_parameter(
|
|
name=attr['name'],
|
|
dtype=dtype,
|
|
shape=shape,
|
|
init_attr=attr['init_attr'])
|
|
return self.program.global_block().create_parameter(
|
|
name=attr['name'], dtype=dtype, shape=shape)
|
|
|
|
def create_tmp_variable(self, dtype):
|
|
return self.program.current_block().create_var(
|
|
name=unique_name(".".join([self.name, 'tmp'])),
|
|
dtype=dtype,
|
|
persistable=False)
|
|
|
|
def create_global_variable(self, *args, **kwargs):
|
|
return self.program.global_block().create_var(
|
|
*args, persistable=False, **kwargs)
|
|
|
|
def append_bias_op(self, input_var):
|
|
size = list(input_var.shape[1:])
|
|
bias_attr = self.bias_attr()
|
|
if not bias_attr:
|
|
return input_var
|
|
|
|
b = self.create_parameter(
|
|
attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
|
|
tmp = self.create_tmp_variable(dtype=input_var.data_type)
|
|
self.append_op(
|
|
type='elementwise_add',
|
|
inputs={'X': [input_var],
|
|
'Y': [b]},
|
|
outputs={'Out': [tmp]})
|
|
return tmp
|
|
|
|
def append_activation(self, input_var):
|
|
act = self.kwargs.get('act', None)
|
|
if act is None:
|
|
return input_var
|
|
if isinstance(act, basestring):
|
|
act = {'type': act}
|
|
tmp = self.create_tmp_variable(dtype=input_var.data_type)
|
|
act_type = act.pop('type')
|
|
self.append_op(
|
|
type=act_type,
|
|
inputs={"X": [input_var]},
|
|
outputs={"Y": [tmp]},
|
|
attrs=act)
|
|
return tmp
|