You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/engine.cc

256 lines
8.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/engine.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace imperative {
void BasicEngine::Init(VarBase* var, const detail::BackwardStrategy& strategy) {
backward_strategy_ = strategy;
const auto& ops = var->GradVarBase()->GradOps();
var->ClearGradOps();
if (ops.empty() || var->OverridedStopGradient()) {
VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
"stop_gradient=True: "
<< var->Name();
return;
} else {
bool valid = false;
for (const auto& op : ops) {
if (op) {
valid = true;
}
}
if (!valid) {
VLOG(3) << "Skip auto grad since all grad op of start VarBase is nullptr";
return;
}
}
init_ops_ = ops;
var->GradVarBase()->ClearGradOps();
VLOG(3) << "start backward";
PADDLE_ENFORCE_EQ(var->HasGradVar(), true,
"Grad variable not exist for variable %s", var->Name());
auto& fwd_var = var->Var().Get<framework::LoDTensor>();
auto* grad_var =
var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
<< " as stop_gradient false";
var->GradVarBase()->InnerSetOverridedStopGradient(false);
auto* dev_ctx = platform::DeviceContextPool::Instance().Get(fwd_var.place());
grad_var->Resize(fwd_var.dims());
grad_var->mutable_data(fwd_var.place(), fwd_var.type());
operators::math::set_constant(*dev_ctx, grad_var, 1.0);
}
void BasicEngine::CheckBackwardInputs(OpBase* op) {
for (auto& pair : op->GetInsMap()) {
for (auto& var : pair.second) {
if (!var || op->IsAllowedEmptyVar(var.get())) {
continue;
}
auto* inner_var = var->MutableVar();
framework::Tensor* tensor = nullptr;
if (!inner_var->IsInitialized() ||
inner_var->IsType<framework::LoDTensor>()) {
tensor = inner_var->GetMutable<framework::LoDTensor>();
}
if (tensor && !tensor->IsInitialized()) {
// if grad var has OverridedStopGradient skip this Op
VLOG(6) << "Set ungenerated Grad: " << var->Name() << " as zero";
auto* dev_ctx =
platform::DeviceContextPool::Instance().Get(op->place());
tensor->mutable_data(op->place(), var->DataType());
operators::math::set_constant(*dev_ctx, tensor, 0.0);
}
}
}
}
void BasicEngine::PrepareGradAccumulators(OpBase* op) {
for (const auto& pair : op->GetOutsMap()) {
for (const auto& var : pair.second) {
if (!var) continue;
auto& accumulator = accumulators_[var.get()];
if (!accumulator) {
if (backward_strategy_.sorted_sum_gradient_) {
accumulator.reset(new SortedGradientAccumulator(var.get()));
} else {
accumulator.reset(new EagerGradientAccumulator(var.get()));
}
}
accumulator->IncreaseRefCnt();
VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
<< "with reference count " << accumulator->RefCnt();
}
}
}
void BasicEngine::PrepareDeps() {
PADDLE_ENFORCE_EQ(op_deps_.empty(), true, "Op deps must be initialized here");
PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
"Accumulators must be initialized here");
std::queue<OpBase*> q;
std::unordered_set<OpBase*> visited;
for (const auto& init_op : init_ops_) {
q.push(init_op.get());
visited.insert(init_op.get());
}
while (!q.empty()) {
auto* cur_op = q.front();
q.pop();
PADDLE_ENFORCE_NE(
cur_op->GetInsMap().empty() && cur_op->GetOutsMap().empty(), true,
platform::errors::NotFound(
"Inputs and outputs of %s do not exist. "
"This may be because you call \"backward()\" twice for the same "
"subgraph. Please try to call \"stop_gradient = True\" or "
"\"detach()\" if you use some same vars between two \"backward()\" "
"calls.",
cur_op->Type()));
PrepareGradAccumulators(cur_op);
const auto& grad_pending_ops = cur_op->GradPendingOps();
for (auto& grad_pending_op : grad_pending_ops) {
PADDLE_ENFORCE_NOT_NULL(grad_pending_op);
++op_deps_[grad_pending_op.get()];
if (visited.count(grad_pending_op.get()) == 0) {
visited.insert(grad_pending_op.get());
q.push(grad_pending_op.get());
}
}
}
}
void BasicEngine::SumGradient(OpBase* op, std::shared_ptr<VariableWrapper> src,
VariableWrapper* dst) {
auto iter = accumulators_.find(dst);
PADDLE_ENFORCE_EQ(iter != accumulators_.end(), true,
"Cannot find gradient of variable %s", dst->Name());
iter->second->Add(std::move(src), op->id());
}
void BasicEngine::Execute() {
PrepareDeps();
// Start execute Computation graph
std::queue<std::shared_ptr<OpBase>> q;
for (const auto& init_op : init_ops_) {
q.push(std::move(init_op));
}
size_t op_num = 0;
while (!q.empty()) {
auto shared_cur_op = std::move(q.front());
q.pop();
auto* cur_op = shared_cur_op.get();
++op_num;
// CheckBackWardInput
CheckBackwardInputs(cur_op);
// Step 1: Run Backward
auto& bwd_ins = cur_op->GetInsMap();
auto& bwd_outs = cur_op->GetOutsMap();
NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
// 1. construct the output map 2. replace the element in the map
// A var may be coresponding to several grad var in one op
for (auto it = tmp_outs.begin(); it != tmp_outs.end(); ++it) {
for (size_t i = 0; i < it->second.size(); ++i) {
auto tmp_var =
std::make_shared<VariableWrapper>("Gtmp@"); // Do not need grad
auto var = it->second[i];
it->second[i] = tmp_var;
if (var) {
need_accu_var_list_.emplace_back(var.get(), std::move(tmp_var));
}
}
}
{
VLOG(3) << "Start to execute grad op " << cur_op->Type();
OpBase::Run(cur_op->InnerOp(), bwd_ins, tmp_outs, cur_op->Attrs(),
cur_op->place());
}
// Step 2: Sum Gradient
if (need_accu_var_list_.size() > 0) {
for (auto& pair : need_accu_var_list_) {
SumGradient(cur_op, std::move(pair.second), pair.first);
}
}
need_accu_var_list_.clear();
// Step 3: Collect ready ops
for (auto& grad_pending_op : cur_op->GradPendingOps()) {
PADDLE_ENFORCE_NOT_NULL(grad_pending_op);
auto iter = op_deps_.find(grad_pending_op.get());
if (iter == op_deps_.end()) {
continue;
}
VLOG(3) << "Found grad_pending op of " << cur_op->Type();
// An Op is ready to go while its deps comes to zero
if (--(iter->second) == 0) {
q.push(grad_pending_op);
VLOG(3) << "Push grad_pending op " << grad_pending_op->Type()
<< " into queue";
}
}
// Step 4: Delete op to collect unused variables
VLOG(3) << "Remove op after op " << cur_op->Type() << " runs";
cur_op->ClearBackwardTrace();
}
Clear();
VLOG(1) << "Backward op number: " << op_num;
}
} // namespace imperative
} // namespace paddle