You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/prepared_operator.cc

183 lines
7.2 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/prepared_operator.h"
#include <sstream>
namespace paddle {
namespace imperative {
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
if (var.IsType<framework::LoDTensor>()) {
return &(var.Get<framework::LoDTensor>());
} else if (var.IsType<framework::SelectedRows>()) {
return &(var.Get<framework::SelectedRows>().value());
} else {
return nullptr;
}
}
template <typename VarType>
static void PrepareDataImpl(
const platform::Place& place, const NameVarMap<VarType>& ins,
const framework::OperatorWithKernel& op,
const framework::OpKernelType& expected_kernel_key) {
for (const auto& name_pair : ins) {
for (const auto& var_base : name_pair.second) {
const auto* tensor = GetTensorFromVar(var_base->Var());
if (tensor && tensor->IsInitialized()) {
auto tmp_place = tensor->place();
// TODO(jiabin): Support transform data layout when we Verify it on more
// tests
if (!(tmp_place == place)) {
auto kernel_type_for_var = op.GetKernelTypeForVar(
name_pair.first, *tensor, expected_kernel_key);
if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
continue;
} else {
VLOG(3) << "Transform Variable " << var_base->Name() << " from "
<< kernel_type_for_var << " to " << expected_kernel_key;
framework::Tensor out;
TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
&out);
SetTensorToVariable(var_base->Var(), out, var_base->MutableVar());
}
}
}
}
}
}
void PreparedOp::PrepareData(
const platform::Place& place, const NameVarMap<VarBase>& ins,
const framework::OperatorWithKernel& op,
const framework::OpKernelType& expected_kernel_key) {
PrepareDataImpl<VarBase>(place, ins, op, expected_kernel_key);
}
void PreparedOp::PrepareData(
const platform::Place& place, const NameVarMap<VariableWrapper>& ins,
const framework::OperatorWithKernel& op,
const framework::OpKernelType& expected_kernel_key) {
PrepareDataImpl<VariableWrapper>(place, ins, op, expected_kernel_key);
}
PreparedOp::PreparedOp(const framework::OperatorBase& op,
const framework::RuntimeContext& ctx,
const framework::OperatorWithKernel::OpKernelFunc& func,
platform::DeviceContext* dev_ctx,
std::vector<framework::KernelConfig>* kernel_configs)
: op_(op),
ctx_(ctx),
func_(func),
dev_ctx_(dev_ctx),
kernel_configs_(kernel_configs) {}
template <typename VarType>
PreparedOp PrepareOpImpl(const NameVarMap<VarType>& ins,
const NameVarMap<VarType>& outs,
const framework::OperatorWithKernel& op,
platform::Place place,
const framework::AttributeMap& attrs) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
// check if op[type] has kernel registered.
auto& all_op_kernels = op.AllOpKernels();
auto kernels_iter = all_op_kernels.find(op.Type());
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.",
op.Type());
}
auto& kernels = kernels_iter->second;
framework::RuntimeContext ctx({}, {});
auto expected_kernel_key =
op.GetExpectedKernelType(DygraphExecutionContext<VarType>(
op, framework::Scope(), *dev_ctx, ctx, nullptr, ins, outs, attrs));
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
// TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
KernelTypeToString(expected_kernel_key));
}
std::vector<framework::KernelConfig>* kernel_configs =
op.GetKernelConfig(expected_kernel_key);
if (!(expected_kernel_key.place_ == place)) {
dev_ctx = pool.Get(expected_kernel_key.place_);
place = dev_ctx->GetPlace();
}
PrepareDataImpl<VarType>(place, ins, op, expected_kernel_key);
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
}
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
const NameVarMap<VarBase>& outs,
const framework::OperatorWithKernel& op,
const platform::Place& place,
const framework::AttributeMap& attrs) {
return PrepareOpImpl<VarBase>(ins, outs, op, place, attrs);
}
PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
const NameVarMap<VariableWrapper>& outs,
const framework::OperatorWithKernel& op,
const platform::Place& place,
const framework::AttributeMap& attrs) {
return PrepareOpImpl<VariableWrapper>(ins, outs, op, place, attrs);
}
template <typename VarType>
static void PreparedOpRunImpl(
const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
const framework::OperatorWithKernel::OpKernelFunc& func,
platform::DeviceContext* dev_ctx,
std::vector<framework::KernelConfig>* kernel_configs,
const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
const framework::AttributeMap& attrs) {
// TODO(zjl): remove scope in dygraph
framework::Scope scope;
DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs);
static_cast<const framework::OperatorWithKernel&>(op).InferShape(
&infer_shape_ctx);
func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx,
kernel_configs, ins, outs, attrs));
}
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
const NameVarMap<VarBase>& outs,
const framework::AttributeMap& attrs) {
PreparedOpRunImpl<VarBase>(op_, ctx_, func_, dev_ctx_, kernel_configs_, ins,
outs, attrs);
}
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
const NameVarMap<VariableWrapper>& outs,
const framework::AttributeMap& attrs) {
PreparedOpRunImpl<VariableWrapper>(op_, ctx_, func_, dev_ctx_,
kernel_configs_, ins, outs, attrs);
}
} // namespace imperative
} // namespace paddle