You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
528 lines
24 KiB
528 lines
24 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
"""Defination of Server and Worker."""
|
|
|
|
from . import ps_pb2 as pslib
|
|
|
|
|
|
class Server(object):
|
|
"""
|
|
A Server basic class
|
|
it's a base class, does not have implementation
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
|
|
class Worker(object):
|
|
"""
|
|
A Worker basic class.
|
|
it's a base class, does not have implementation
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
|
|
class DownpourServer(Server):
|
|
"""
|
|
DownpourServer class is used to generate server program_desc
|
|
Args:
|
|
server: it is pslib.ServerParameter()
|
|
Examples:
|
|
server = DownpourServer()
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._server = pslib.ServerParameter()
|
|
self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
|
|
self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
|
|
self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
|
|
self._server.downpour_server_param.service_param.start_server_port = 0
|
|
self._server.downpour_server_param.service_param.server_thread_num = 12
|
|
|
|
def add_sparse_table(self, table_id, strategy):
|
|
"""
|
|
Args:
|
|
table_id(int): id of sparse params table
|
|
strategy(dict): the config dict.
|
|
Returns:
|
|
return None
|
|
"""
|
|
|
|
for table in self._server.downpour_server_param.downpour_table_param:
|
|
if table.table_id == table_id:
|
|
if table.type == pslib.PS_SPARSE_TABLE:
|
|
return
|
|
else:
|
|
raise ValueError("expect table %s type=%s, but actual type=%s" \
|
|
%(table_id, pslib.PS_SPARSE_TABLE, table.type))
|
|
if strategy is None:
|
|
strategy = dict()
|
|
table = self._server.downpour_server_param.downpour_table_param.add()
|
|
table.table_id = table_id
|
|
table.type = pslib.PS_SPARSE_TABLE
|
|
|
|
support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
|
|
'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
|
|
'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
|
|
'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
|
|
'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
|
|
'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
|
|
'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
|
|
'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold']
|
|
|
|
for key in strategy:
|
|
if key not in support_sparse_key_list:
|
|
raise ValueError("strategy key '%s' not support" % (key))
|
|
|
|
support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable']
|
|
if strategy.get('sparse_table_class') is not None:
|
|
table_class = strategy.get('sparse_table_class')
|
|
if table_class not in support_table_calss:
|
|
raise ValueError(
|
|
"support sparse_table_class: [ 'DownpourSparseTable', 'DownpourSparseSSDTable'], \
|
|
but actual %s" % (table_class))
|
|
else:
|
|
table_class = 'DownpourSparseTable'
|
|
|
|
table.table_class = table_class
|
|
|
|
if table_class == 'DownpourSparseTable' or table_class == 'DownpourSparseSSDTable':
|
|
table.enable_sparse_table_cache = strategy.get(
|
|
'sparse_enable_cache', True)
|
|
table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
|
|
0.00055)
|
|
table.sparse_table_cache_file_num = strategy.get(
|
|
'sparse_cache_file_num', 16)
|
|
table.compress_in_save = strategy.get('sparse_compress_in_save',
|
|
True)
|
|
table.shard_num = strategy.get('sparse_shard_num', 1000)
|
|
# DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
|
|
# DownpourCtrAccessor : for ctr task, has cvm, slot, embedding and sgd info
|
|
# DownpourSparseValueAccessor : for general task, has embedding and sgd info
|
|
# DownpourCtrDoubleAccessor : for ctr task, which show clk are in double
|
|
|
|
support_accessor_class = [
|
|
'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
|
|
'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'
|
|
]
|
|
if strategy.get('sparse_accessor_class') is not None:
|
|
accessor_class = strategy.get('sparse_accessor_class')
|
|
if accessor_class not in support_accessor_class:
|
|
raise ValueError(
|
|
"support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor', \
|
|
'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'], \
|
|
but actual %s" % (accessor_class))
|
|
else:
|
|
accessor_class = 'DownpourCtrAccessor'
|
|
|
|
table.accessor.accessor_class = accessor_class
|
|
|
|
if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
|
|
table.accessor.sparse_sgd_param.learning_rate = strategy.get(
|
|
'sparse_learning_rate', 0.05)
|
|
table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
|
|
'sparse_initial_g2sum', 3)
|
|
table.accessor.sparse_sgd_param.initial_range = strategy.get(
|
|
'sparse_initial_range', 1e-4)
|
|
if strategy.get('sparse_weight_bounds') is None:
|
|
table.accessor.sparse_sgd_param.weight_bounds.extend(
|
|
[-10, 10])
|
|
else:
|
|
table.accessor.sparse_sgd_param.weight_bounds.extend(
|
|
strategy.get('sparse_weight_bounds'))
|
|
table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
|
|
table.accessor.embedx_threshold = strategy.get(
|
|
'sparse_embedx_threshold', 10)
|
|
table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
|
|
table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
|
|
'sparse_nonclk_coeff', 0.1)
|
|
table.accessor.downpour_accessor_param.click_coeff = strategy.get(
|
|
'sparse_click_coeff', 1)
|
|
table.accessor.downpour_accessor_param.base_threshold = strategy.get(
|
|
'sparse_base_threshold', 1.5)
|
|
table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
|
|
'sparse_delta_threshold', 0.25)
|
|
table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
|
|
'sparse_delta_keep_days', 16)
|
|
table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
|
|
'sparse_delete_after_unseen_days', 30)
|
|
table.accessor.downpour_accessor_param.ssd_unseenday_threshold = strategy.get(
|
|
'sparse_ssd_unseenday_threshold', 1)
|
|
table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
|
|
'sparse_show_click_decay_rate', 0.98)
|
|
table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
|
|
'sparse_delete_threshold', 0.8)
|
|
converter = strategy.get(
|
|
'sparse_converter',
|
|
"(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
|
|
deconverter = strategy.get(
|
|
'sparse_deconverter',
|
|
"(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
|
|
)
|
|
|
|
table1 = table.accessor.table_accessor_save_param.add()
|
|
table1.param = 1
|
|
table1.converter = converter
|
|
table1.deconverter = deconverter
|
|
|
|
table2 = table.accessor.table_accessor_save_param.add()
|
|
table2.param = 2
|
|
table2.converter = converter
|
|
table2.deconverter = deconverter
|
|
elif accessor_class == 'DownpourSparseValueAccessor':
|
|
optimizer_name = strategy.get("sparse_optimizer", "adam")
|
|
table.accessor.sparse_commonsgd_param.name = optimizer_name
|
|
table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
|
|
table.accessor.fea_dim = int(table.accessor.embedx_dim)
|
|
if optimizer_name == "naive":
|
|
table.accessor.sparse_commonsgd_param.naive.learning_rate = \
|
|
strategy.get('sparse_learning_rate', 0.05)
|
|
table.accessor.sparse_commonsgd_param.naive.initial_range = \
|
|
strategy.get('sparse_initial_range', 1e-4)
|
|
if strategy.get('sparse_weight_bounds') is None:
|
|
table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
|
|
[-10, 10])
|
|
else:
|
|
table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
|
|
strategy.get('sparse_weight_bounds'))
|
|
elif optimizer_name == "adagrad":
|
|
table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
|
|
strategy.get('sparse_learning_rate', 0.05)
|
|
table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
|
|
strategy.get('sparse_initial_range', 1e-4)
|
|
table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
|
|
'sparse_initial_g2sum', 3)
|
|
if strategy.get('sparse_weight_bounds') is None:
|
|
table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
|
|
[-10, 10])
|
|
else:
|
|
table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
|
|
strategy.get('sparse_weight_bounds'))
|
|
elif optimizer_name == "adam":
|
|
table.accessor.sparse_commonsgd_param.adam.learning_rate = \
|
|
strategy.get('sparse_learning_rate', 0.001)
|
|
table.accessor.sparse_commonsgd_param.adam.initial_range = \
|
|
strategy.get('sparse_initial_range', 1e-4)
|
|
table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
|
|
'sparse_beta1_decay_rate', 0.9)
|
|
table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
|
|
'sparse_beta2_decay_rate', 0.999)
|
|
table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
|
|
'sparse_ada_epsilon', 1e-8)
|
|
if strategy.get('sparse_weight_bounds') is None:
|
|
table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
|
|
[-10, 10])
|
|
else:
|
|
table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
|
|
strategy.get('sparse_weight_bounds'))
|
|
converter = strategy.get(
|
|
'sparse_converter',
|
|
"(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
|
|
deconverter = strategy.get(
|
|
'sparse_deconverter',
|
|
"(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
|
|
)
|
|
|
|
table1 = table.accessor.table_accessor_save_param.add()
|
|
table1.param = 1
|
|
table1.converter = converter
|
|
table1.deconverter = deconverter
|
|
|
|
table2 = table.accessor.table_accessor_save_param.add()
|
|
table2.param = 2
|
|
table2.converter = converter
|
|
table2.deconverter = deconverter
|
|
|
|
def add_dense_table(self, table_id, param_var, grad_var, strategy,
|
|
sparse_table_names):
|
|
"""
|
|
Args:
|
|
table_id(int): id of sparse params table
|
|
param_var(list): param vars
|
|
grad_var(list): param grad vars
|
|
strategy(dict): the dense config dict
|
|
sparse_table_names(list): sparse table names
|
|
Returns:
|
|
return None
|
|
"""
|
|
fea_dim = 0
|
|
dense_param_vars = []
|
|
for p in param_var:
|
|
if p.name not in sparse_table_names:
|
|
dense_param_vars.append(p)
|
|
|
|
for param in dense_param_vars:
|
|
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
|
|
|
|
for table in self._server.downpour_server_param.downpour_table_param:
|
|
if table.table_id == table_id:
|
|
if table.type == pslib.PS_DENSE_TABLE:
|
|
table.accessor.fea_dim = fea_dim
|
|
return
|
|
else:
|
|
raise ValueError("expect table %s type=%s, but actual type=%s" \
|
|
%(table_id, pslib.PS_DENSE_TABLE, table.type))
|
|
|
|
if strategy is None:
|
|
strategy = dict()
|
|
table = self._server.downpour_server_param.downpour_table_param.add()
|
|
table.table_id = table_id
|
|
support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
|
|
'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
|
|
'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']
|
|
|
|
for key in strategy:
|
|
if key not in support_dense_key_list:
|
|
raise ValueError("strategy key '%s' not support" % (key))
|
|
|
|
table.table_class = strategy.get('dense_table_class',
|
|
"DownpourDenseTable")
|
|
table.type = pslib.PS_DENSE_TABLE
|
|
table.compress_in_save = strategy.get('dense_compress_in_save', True)
|
|
table.accessor.accessor_class = strategy.get(
|
|
'dense_accessor_class', "DownpourDenseValueAccessor")
|
|
table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
|
|
"adam")
|
|
table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
|
|
'dense_learning_rate', 5e-06)
|
|
table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
|
|
'dense_avg_decay', 0.999993)
|
|
table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
|
|
'dense_ada_decay', 0.9999)
|
|
table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
|
|
'dense_ada_epsilon', 1e-8)
|
|
table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
|
|
'dense_mom_decay', 0.99)
|
|
table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
|
|
'dense_naive_lr', 0.0002)
|
|
table.accessor.fea_dim = fea_dim
|
|
|
|
def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
|
|
strategy, sparse_table_names):
|
|
"""
|
|
Args:
|
|
table_id(int): id of datanorm table
|
|
learning_rate(float): the learning rate used to update parameters
|
|
param_var(list): param vars
|
|
grad_var(list): param grad vars
|
|
strategy(dict): the datanorm config dict
|
|
sparse_table_names(list): sparse table names
|
|
Returns:
|
|
return None
|
|
"""
|
|
fea_dim = 0
|
|
dense_param_vars = []
|
|
for p in param_var:
|
|
if p.name not in sparse_table_names:
|
|
dense_param_vars.append(p)
|
|
|
|
for param in dense_param_vars:
|
|
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
|
|
|
|
for table in self._server.downpour_server_param.downpour_table_param:
|
|
if table.table_id == table_id:
|
|
if table.type == pslib.PS_DENSE_TABLE:
|
|
table.accessor.fea_dim = fea_dim
|
|
return
|
|
else:
|
|
raise ValueError("expect table %s type=%s, but actual type=%s" \
|
|
%(table_id, pslib.PS_DENSE_TABLE, table.type))
|
|
if strategy is None:
|
|
strategy = dict()
|
|
|
|
support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
|
|
'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']
|
|
|
|
for key in strategy:
|
|
if key not in support_datanorm_key_list:
|
|
raise ValueError("strategy key '%s' not support" % (key))
|
|
|
|
table = self._server.downpour_server_param.downpour_table_param.add()
|
|
table.table_id = table_id
|
|
table.table_class = strategy.get('datanorm_table_class',
|
|
'DownpourDenseTable')
|
|
table.type = pslib.PS_DENSE_TABLE
|
|
table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
|
|
table.accessor.accessor_class = strategy.get(
|
|
'datanorm_accessor_class', 'DownpourDenseValueAccessor')
|
|
table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
|
|
'summary')
|
|
table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
|
|
'datanorm_decay_rate', 0.999999)
|
|
table.accessor.fea_dim = fea_dim
|
|
|
|
def get_desc(self):
|
|
"""
|
|
Return downpour server program_desc
|
|
"""
|
|
return self._server
|
|
|
|
|
|
class DownpourWorker(Worker):
|
|
"""
|
|
DownpourWorker class is used to generate worker program_desc
|
|
Args:
|
|
window (int): push params frequency
|
|
worker: it is pslib.DownpourTrainerParameter
|
|
Examples:
|
|
worker = DownpourWorker(1)
|
|
"""
|
|
|
|
def __init__(self, window):
|
|
self.window = window
|
|
self._worker = pslib.DownpourTrainerParameter()
|
|
|
|
def add_sparse_table(self,
|
|
table_id,
|
|
slot_key_vars,
|
|
slot_value_vars,
|
|
slot_value_grads=None):
|
|
"""
|
|
Args:
|
|
table_id(int): id of sparse params table
|
|
slot_key_vars(list): slot key id
|
|
slot_value_vars(list): slot key value after embedding
|
|
slot_value_grads(list): grad of all params, default is None
|
|
|
|
Returns:
|
|
return None
|
|
"""
|
|
if slot_value_grads is None:
|
|
slot_value_grad_names = \
|
|
[var.name + "@GRAD" for var in slot_value_vars]
|
|
else:
|
|
value_to_key = {}
|
|
for i in range(len(slot_key_vars)):
|
|
value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
|
|
slot_value_grad_names = []
|
|
all_grad_names = [var.name for var in slot_value_grads]
|
|
for var in slot_value_vars:
|
|
if var.name + "@GRAD" in all_grad_names:
|
|
slot_value_grad_names.append(var.name + "@GRAD")
|
|
sorted_slot_value_vars = [i for i in slot_value_vars if \
|
|
i.name + "@GRAD" in slot_value_grad_names]
|
|
sorted_slot_value_vars += [i for i in slot_value_vars if \
|
|
i.name + "@GRAD" not in slot_value_grad_names]
|
|
sorted_slot_key_vars = \
|
|
[value_to_key[v.name] for v in sorted_slot_value_vars]
|
|
|
|
target_table = None
|
|
for table in self._worker.sparse_table:
|
|
if table.table_id == table_id:
|
|
keys = table.slot_key
|
|
key_names = [var.name for var in sorted_slot_key_vars]
|
|
for key_name in key_names:
|
|
if key_name not in keys:
|
|
raise ValueError("sparse table %s slot_key error" %
|
|
table_id)
|
|
target_table = table
|
|
break
|
|
|
|
table = target_table
|
|
if table is not None:
|
|
self._worker.sparse_table.remove(table)
|
|
table = self._worker.sparse_table.add()
|
|
table.table_id = table_id
|
|
table.slot_key.extend([var.name for var in sorted_slot_key_vars])
|
|
table.slot_value.extend([var.name for var in sorted_slot_value_vars])
|
|
table.slot_gradient.extend(slot_value_grad_names)
|
|
|
|
def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
|
|
dense_start_table_id, sparse_table_names):
|
|
"""
|
|
Args:
|
|
table_id(int): id of sparse params table
|
|
learning_rate(float): the learning rate used to update parameters. \
|
|
Can be a float value
|
|
param_vars(list): all dense param. it is a list.
|
|
grad_vars(list): all dense grad parm it is a list.
|
|
dense_start_table_id(int): dense table start index
|
|
sparse_table_names(list): sparse table names
|
|
Returns:
|
|
return None
|
|
"""
|
|
sparse_table_name_grad = []
|
|
for name in sparse_table_names:
|
|
sparse_table_name_grad.append(name + "@GRAD")
|
|
|
|
dense_param_name = []
|
|
for p in param_vars:
|
|
if p.name not in sparse_table_names:
|
|
dense_param_name.append(p.name)
|
|
|
|
dense_grad_name = []
|
|
for g in grad_vars:
|
|
if g.name not in sparse_table_name_grad:
|
|
dense_grad_name.append(g.name)
|
|
|
|
dense_param_name.sort()
|
|
dense_grad_name.sort()
|
|
|
|
for table in self._worker.dense_table:
|
|
if table.table_id == table_id:
|
|
desc_dense_param_name = list(table.dense_variable_name)
|
|
desc_dense_param_name.sort()
|
|
|
|
if dense_param_name == desc_dense_param_name:
|
|
desc_dense_grad_name = list(
|
|
table.dense_gradient_variable_name)
|
|
desc_dense_grad_name.sort()
|
|
if dense_grad_name == desc_dense_grad_name:
|
|
return
|
|
else:
|
|
raise ValueError(
|
|
"dense table %s dense_gradient_variable_name "
|
|
"error" % table_id)
|
|
else:
|
|
raise ValueError(
|
|
"dense table %s dense_variable_name error" % table_id)
|
|
|
|
table = self._worker.dense_table.add()
|
|
table.table_id = table_id
|
|
|
|
#def cmp_fc(x, y):
|
|
# if x.startswith("fc_") and y.startswith("fc_"):
|
|
# index_x = x.find('.')
|
|
# index_y = y.find('.')
|
|
# if index_x > 0 and index_y > 0:
|
|
# num_x = x[3:index_x]
|
|
# num_y = y[3:index_y]
|
|
# if num_x.isdigit() and num_y.isdigit():
|
|
# if int(num_x) < int(num_y):
|
|
# return -1
|
|
# if int(num_x) > int(num_y):
|
|
# return 1
|
|
# if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
|
|
# return -1
|
|
# if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
|
|
# return 1
|
|
# if x < y:
|
|
# return -1
|
|
# else:
|
|
# return 1
|
|
|
|
#table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
|
|
#table.dense_gradient_variable_name.extend(
|
|
# sorted(dense_grad_name, cmp_fc))
|
|
table.dense_variable_name.extend(dense_param_name)
|
|
table.dense_gradient_variable_name.extend(dense_grad_name)
|
|
|
|
def get_desc(self):
|
|
"""
|
|
Return downpour worker program_desc
|
|
"""
|
|
return self._worker
|