You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
4.2 KiB
108 lines
4.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
from op_test import OpTest
|
|
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.framework as framework
|
|
import warnings
|
|
import paddle
|
|
|
|
|
|
class TestStaticDeviceManage(unittest.TestCase):
|
|
def test_cpu_device(self):
|
|
paddle.set_device('cpu')
|
|
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
|
|
out2 = paddle.ones(shape=[1, 3], dtype='float32')
|
|
out3 = paddle.concat(x=[out1, out2], axis=0)
|
|
exe = paddle.fluid.Executor()
|
|
exe.run(paddle.fluid.default_startup_program())
|
|
res = exe.run(fetch_list=[out3])
|
|
device = paddle.get_device()
|
|
self.assertEqual(isinstance(exe.place, core.CPUPlace), True)
|
|
self.assertEqual(device, "cpu")
|
|
|
|
def test_gpu_device(self):
|
|
if core.is_compiled_with_cuda():
|
|
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
|
|
out2 = paddle.ones(shape=[1, 3], dtype='float32')
|
|
out3 = paddle.concat(x=[out1, out2], axis=0)
|
|
paddle.set_device('gpu:0')
|
|
exe = paddle.fluid.Executor()
|
|
exe.run(paddle.fluid.default_startup_program())
|
|
res = exe.run(fetch_list=[out3])
|
|
device = paddle.get_device()
|
|
self.assertEqual(isinstance(exe.place, core.CUDAPlace), True)
|
|
self.assertEqual(device, "gpu:0")
|
|
|
|
def test_xpu_device(self):
|
|
if core.is_compiled_with_xpu():
|
|
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
|
|
out2 = paddle.ones(shape=[1, 3], dtype='float32')
|
|
out3 = paddle.concat(x=[out1, out2], axis=0)
|
|
paddle.set_device('xpu:0')
|
|
exe = paddle.fluid.Executor()
|
|
exe.run(paddle.fluid.default_startup_program())
|
|
res = exe.run(fetch_list=[out3])
|
|
device = paddle.get_device()
|
|
self.assertEqual(isinstance(exe.place, core.XPUPlace), True)
|
|
self.assertEqual(device, "xpu:0")
|
|
|
|
|
|
class TestImperativeDeviceManage(unittest.TestCase):
|
|
def test_cpu(self):
|
|
with fluid.dygraph.guard():
|
|
paddle.set_device('cpu')
|
|
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
|
|
out2 = paddle.ones(shape=[1, 3], dtype='float32')
|
|
out3 = paddle.concat(x=[out1, out2], axis=0)
|
|
device = paddle.get_device()
|
|
self.assertEqual(
|
|
isinstance(framework._current_expected_place(), core.CPUPlace),
|
|
True)
|
|
self.assertEqual(device, "cpu")
|
|
|
|
def test_gpu(self):
|
|
if core.is_compiled_with_cuda():
|
|
with fluid.dygraph.guard():
|
|
paddle.set_device('gpu:0')
|
|
out1 = paddle.zeros(shape=[1, 3], dtype='float32')
|
|
out2 = paddle.ones(shape=[1, 3], dtype='float32')
|
|
out3 = paddle.concat(x=[out1, out2], axis=0)
|
|
device = paddle.get_device()
|
|
self.assertEqual(
|
|
isinstance(framework._current_expected_place(),
|
|
core.CUDAPlace), True)
|
|
self.assertEqual(device, "gpu:0")
|
|
|
|
def test_xpu(self):
|
|
if core.is_compiled_with_xpu():
|
|
with fluid.dygraph.guard():
|
|
out = paddle.to_tensor([1, 2])
|
|
device = paddle.get_device()
|
|
self.assertEqual(
|
|
isinstance(framework._current_expected_place(),
|
|
core.XPUPlace), True)
|
|
self.assertTrue(out.place.is_xpu_place())
|
|
self.assertEqual(device, "xpu:0")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|