You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.3 KiB
91 lines
3.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle.fluid.optimizer import Optimizer
|
|
|
|
|
|
class MetaOptimizerBase(Optimizer):
|
|
def __init__(self, optimizer):
|
|
self.inner_opt = optimizer
|
|
self._learning_rate = self.inner_opt._learning_rate
|
|
self._learning_rate_map = self.inner_opt._learning_rate_map
|
|
self.meta_optimizers_white_list = []
|
|
self.meta_optimizers_black_list = []
|
|
|
|
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
|
|
user_defined_strategy):
|
|
self.loss = loss
|
|
self.role_maker = role_maker
|
|
self.user_defined_optimizer = user_defined_optimizer
|
|
self.user_defined_strategy = user_defined_strategy
|
|
|
|
def _update_inner_optimizer(self, optimizer):
|
|
self.inner_opt = optimizer
|
|
|
|
def _can_apply(self):
|
|
return False
|
|
|
|
def _is_graph_out(self):
|
|
return False
|
|
|
|
def _can_update(self, optimizer):
|
|
if str(optimizer.__class__.__name__) in self.meta_optimizers_white_list:
|
|
return True
|
|
return False
|
|
|
|
def _disable_strategy(self, dist_strategy):
|
|
raise NotImplementedError("you should implement disable strategy in {}".
|
|
format(type(self).__name__))
|
|
|
|
def apply_gradients(self, params_grads):
|
|
return self.inner_opt.apply_gradients(params_grads=params_grads)
|
|
|
|
def backward(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None,
|
|
callbacks=None):
|
|
return self.inner_opt.backward(loss, startup_program, parameter_list,
|
|
no_grad_set, callbacks)
|
|
|
|
def apply_optimize(self, loss, startup_program, params_grads):
|
|
return self.inner_opt.apply_optimize(
|
|
loss, startup_program=startup_program, params_grads=params_grads)
|
|
|
|
def minimize_impl(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
params_grads = self.backward(
|
|
loss,
|
|
startup_program=startup_program,
|
|
parameter_list=parameter_list,
|
|
no_grad_set=no_grad_set)
|
|
|
|
optimize_ops = self.apply_optimize(
|
|
loss, startup_program=startup_program, params_grads=params_grads)
|
|
|
|
return optimize_ops, params_grads
|
|
|
|
def minimize(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
optimize_ops, params_grads = self.minimize_impl(
|
|
loss, startup_program, parameter_list, no_grad_set)
|
|
return optimize_ops, params_grads
|