You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/meta_optimizer_base.py

91 lines
3.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.optimizer import Optimizer
class MetaOptimizerBase(Optimizer):
def __init__(self, optimizer):
self.inner_opt = optimizer
self._learning_rate = self.inner_opt._learning_rate
self._learning_rate_map = self.inner_opt._learning_rate_map
self.meta_optimizers_white_list = []
self.meta_optimizers_black_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
self.loss = loss
self.role_maker = role_maker
self.user_defined_optimizer = user_defined_optimizer
self.user_defined_strategy = user_defined_strategy
def _update_inner_optimizer(self, optimizer):
self.inner_opt = optimizer
def _can_apply(self):
return False
def _is_graph_out(self):
return False
def _can_update(self, optimizer):
if str(optimizer.__class__.__name__) in self.meta_optimizers_white_list:
return True
return False
def _disable_strategy(self, dist_strategy):
raise NotImplementedError("you should implement disable strategy in {}".
format(type(self).__name__))
def apply_gradients(self, params_grads):
return self.inner_opt.apply_gradients(params_grads=params_grads)
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.inner_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
def apply_optimize(self, loss, startup_program, params_grads):
return self.inner_opt.apply_optimize(
loss, startup_program=startup_program, params_grads=params_grads)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
params_grads = self.backward(
loss,
startup_program=startup_program,
parameter_list=parameter_list,
no_grad_set=no_grad_set)
optimize_ops = self.apply_optimize(
loss, startup_program=startup_program, params_grads=params_grads)
return optimize_ops, params_grads
def minimize(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads = self.minimize_impl(
loss, startup_program, parameter_list, no_grad_set)
return optimize_ops, params_grads