You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/recompute_optimizer.py

70 lines
2.7 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle.fluid.optimizer import RecomputeOptimizer as RO
from .meta_optimizer_base import MetaOptimizerBase
class RecomputeOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(RecomputeOptimizer, self).__init__(optimizer)
#self.inner_opt = RO(optimizer)
self.inner_opt = optimizer
self.wrapped_opt = RO(optimizer)
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = [
"LarsOptimizer",
"LambOptimizer",
"GradientMergeOptimizer",
"GraphExecutionOptimizer",
]
self.meta_optimizers_black_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(RecomputeOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
self.wrapped_opt._set_checkpoints(
list(user_defined_strategy.recompute_configs["checkpoints"]))
def _can_apply(self):
if self.user_defined_strategy.recompute == True:
if len(self.user_defined_strategy.recompute_configs[
"checkpoints"]) == 0:
return False
else:
return True
def _disable_strategy(self, dist_strategy):
dist_strategy.recompute = False
dist_strategy.recompute_configs = {}
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.wrapped_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads = \
self.wrapped_opt.minimize(loss, startup_program,
parameter_list, no_grad_set)
return optimize_ops, params_grads