You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.7 KiB
70 lines
2.7 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
from paddle.fluid.optimizer import RecomputeOptimizer as RO
|
|
from .meta_optimizer_base import MetaOptimizerBase
|
|
|
|
|
|
class RecomputeOptimizer(MetaOptimizerBase):
|
|
def __init__(self, optimizer):
|
|
super(RecomputeOptimizer, self).__init__(optimizer)
|
|
#self.inner_opt = RO(optimizer)
|
|
self.inner_opt = optimizer
|
|
self.wrapped_opt = RO(optimizer)
|
|
# we do not allow meta optimizer to be inner optimizer currently
|
|
self.meta_optimizers_white_list = [
|
|
"LarsOptimizer",
|
|
"LambOptimizer",
|
|
"GradientMergeOptimizer",
|
|
"GraphExecutionOptimizer",
|
|
]
|
|
self.meta_optimizers_black_list = []
|
|
|
|
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
|
|
user_defined_strategy):
|
|
super(RecomputeOptimizer, self)._set_basic_info(
|
|
loss, role_maker, user_defined_optimizer, user_defined_strategy)
|
|
self.wrapped_opt._set_checkpoints(
|
|
list(user_defined_strategy.recompute_configs["checkpoints"]))
|
|
|
|
def _can_apply(self):
|
|
if self.user_defined_strategy.recompute == True:
|
|
if len(self.user_defined_strategy.recompute_configs[
|
|
"checkpoints"]) == 0:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def _disable_strategy(self, dist_strategy):
|
|
dist_strategy.recompute = False
|
|
dist_strategy.recompute_configs = {}
|
|
|
|
def backward(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None,
|
|
callbacks=None):
|
|
return self.wrapped_opt.backward(loss, startup_program, parameter_list,
|
|
no_grad_set, callbacks)
|
|
|
|
def minimize_impl(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
optimize_ops, params_grads = \
|
|
self.wrapped_opt.minimize(loss, startup_program,
|
|
parameter_list, no_grad_set)
|
|
return optimize_ops, params_grads
|