You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
2.1 KiB
60 lines
2.1 KiB
import py_paddle.swig_paddle as api
|
|
|
|
import topology
|
|
from data_feeder import DataFeeder
|
|
import itertools
|
|
import numpy
|
|
|
|
__all__ = ['InferenceEngine', 'infer']
|
|
|
|
|
|
class InferenceEngine(object):
|
|
def __init__(self, output, parameters):
|
|
topo = topology.Topology(output)
|
|
gm = api.GradientMachine.createFromConfigProto(
|
|
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
|
|
for param in gm.getParameters():
|
|
val = param.getBuf(api.PARAMETER_VALUE)
|
|
name = param.getName()
|
|
assert isinstance(val, api.Vector)
|
|
val.copyFromNumpyArray(parameters.get(name).flatten())
|
|
self.__gradient_machine__ = gm
|
|
self.__data_types__ = topo.data_type()
|
|
|
|
def iter_infer(self, reader, reader_dict=None):
|
|
if reader_dict is None:
|
|
reader_dict = self.default_reader_dict()
|
|
feeder = DataFeeder(self.__data_types__, reader_dict)
|
|
self.__gradient_machine__.start()
|
|
for data_batch in reader():
|
|
yield self.__gradient_machine__.forwardTest(feeder(data_batch))
|
|
self.__gradient_machine__.finish()
|
|
|
|
def iter_infer_field(self, field, **kwargs):
|
|
for result in self.iter_infer(**kwargs):
|
|
yield [each_result[field] for each_result in result]
|
|
|
|
def infer(self, field='value', **kwargs):
|
|
retv = None
|
|
for result in self.iter_infer_field(field=field, **kwargs):
|
|
if retv is None:
|
|
retv = [[]] * len(result)
|
|
for i, item in enumerate(result):
|
|
retv[i].append(item)
|
|
retv = [numpy.concatenate(out) for out in retv]
|
|
if len(retv) == 1:
|
|
return retv[0]
|
|
else:
|
|
return retv
|
|
|
|
def default_reader_dict(self):
|
|
reader_dict = dict()
|
|
for i, tp in enumerate(self.__data_types__):
|
|
reader_dict[tp[0]] = i
|
|
return reader_dict
|
|
|
|
|
|
def infer(output, parameters, reader, reader_dict=None, field='value'):
|
|
inferer = InferenceEngine(output=output, parameters=parameters)
|
|
return inferer.infer(field=field, reader=reader, reader_dict=reader_dict)
|