You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							106 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							106 lines
						
					
					
						
							3.6 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
 | 
						|
   Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
   you may not use this file except in compliance with the License.
 | 
						|
   You may obtain a copy of the License at
 | 
						|
 | 
						|
   http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
   Unless required by applicable law or agreed to in writing, software
 | 
						|
   distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
   See the License for the specific language governing permissions and
 | 
						|
   limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "paddle/framework/eigen.h"
 | 
						|
#include "paddle/framework/op_registry.h"
 | 
						|
#include "paddle/platform/hostdevice.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct CheckLabelValue {
 | 
						|
  HOSTDEVICE T operator()(const T& val) const {
 | 
						|
    PADDLE_ASSERT(val == static_cast<T>(0) || val == static_cast<T>(1));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct ModifiedHuberLossForward {
 | 
						|
  HOSTDEVICE T operator()(const T& val) const {
 | 
						|
    if (val < -1) {
 | 
						|
      return -4 * val;
 | 
						|
    } else if (val < 1) {
 | 
						|
      return (1 - val) * (1 - val);
 | 
						|
    } else {
 | 
						|
      return static_cast<T>(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Place, typename T>
 | 
						|
class ModifiedHuberLossKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* in0 = context.Input<Tensor>("X");
 | 
						|
    auto* in1 = context.Input<Tensor>("Y");
 | 
						|
    auto* out0 = context.Output<framework::Tensor>("IntermediateVal");
 | 
						|
    auto* out1 = context.Output<framework::Tensor>("Out");
 | 
						|
 | 
						|
    out0->mutable_data<T>(context.GetPlace());
 | 
						|
    out1->mutable_data<T>(context.GetPlace());
 | 
						|
    auto place = context.GetEigenDevice<Place>();
 | 
						|
 | 
						|
    auto x = EigenVector<T>::Flatten(*in0);
 | 
						|
    auto y = EigenVector<T>::Flatten(*in1);
 | 
						|
    // make sure value's of Y in {0, 1}
 | 
						|
    y.unaryExpr(CheckLabelValue<T>());
 | 
						|
    auto inter_val = EigenVector<T>::Flatten(*out0);
 | 
						|
    // scale y to {-1, +1} and compute x * y
 | 
						|
    inter_val.device(place) = x * (2 * y - static_cast<T>(1));
 | 
						|
    auto loss = EigenVector<T>::Flatten(*out1);
 | 
						|
    loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward<T>());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// CPU backward kernel
 | 
						|
template <typename T>
 | 
						|
class ModifiedHuberLossGradCPUKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* in0 = context.Input<Tensor>("Y");
 | 
						|
    auto* in1 = context.Input<framework::Tensor>("IntermediateVal");
 | 
						|
    auto* in2 = context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* out0 = context.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
						|
 | 
						|
    if (out0) {
 | 
						|
      const T* y_ptr = in0->data<T>();
 | 
						|
      const T* inter_val_ptr = in1->data<T>();
 | 
						|
      const T* out_grad_ptr = in2->data<T>();
 | 
						|
      size_t counts = static_cast<size_t>(framework::product(in1->dims()));
 | 
						|
      T* x_grad_ptr = out0->mutable_data<T>(context.GetPlace());
 | 
						|
      for (size_t i = 0; i < counts; ++i) {
 | 
						|
        if (inter_val_ptr[i] < -1) {
 | 
						|
          x_grad_ptr[i] = -4 * (2 * y_ptr[i] - 1) * out_grad_ptr[i];
 | 
						|
        } else if (inter_val_ptr[i] < 1) {
 | 
						|
          x_grad_ptr[i] = -2 * (1 - inter_val_ptr[i]) * (2 * y_ptr[i] - 1) *
 | 
						|
                          out_grad_ptr[i];
 | 
						|
        } else {
 | 
						|
          x_grad_ptr[i] = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |