You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
14 KiB
370 lines
14 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
|
|
#include <google/protobuf/text_format.h>
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/fluid/framework/ir/pass.h"
|
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
|
#include "paddle/fluid/inference/api/helper.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
|
|
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
|
|
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
|
|
DEFINE_int32(batch_size, 10, "batch size.");
|
|
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
TEST(Analyzer, analysis_without_tensorrt) {
|
|
FLAGS_IA_enable_tensorrt_subgraph_engine = false;
|
|
Argument argument;
|
|
argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
|
|
Analyzer analyser;
|
|
analyser.Run(&argument);
|
|
}
|
|
|
|
TEST(Analyzer, analysis_with_tensorrt) {
|
|
FLAGS_IA_enable_tensorrt_subgraph_engine = true;
|
|
Argument argument;
|
|
argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
|
|
Analyzer analyser;
|
|
analyser.Run(&argument);
|
|
}
|
|
|
|
void TestWord2vecPrediction(const std::string &model_path) {
|
|
NativeConfig config;
|
|
config.model_dir = model_path;
|
|
config.use_gpu = false;
|
|
config.device = 0;
|
|
auto predictor =
|
|
::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
|
|
config);
|
|
|
|
// One single batch
|
|
|
|
int64_t data[4] = {1, 2, 3, 4};
|
|
PaddleTensor tensor;
|
|
tensor.shape = std::vector<int>({4, 1});
|
|
tensor.data = PaddleBuf(data, sizeof(data));
|
|
tensor.dtype = PaddleDType::INT64;
|
|
|
|
// For simplicity, we set all the slots with the same data.
|
|
std::vector<PaddleTensor> slots(4, tensor);
|
|
std::vector<PaddleTensor> outputs;
|
|
CHECK(predictor->Run(slots, &outputs));
|
|
|
|
PADDLE_ENFORCE(outputs.size(), 1UL);
|
|
// Check the output buffer size and result of each tid.
|
|
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
|
|
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
|
|
0.000932706};
|
|
const size_t num_elements = outputs.front().data.length() / sizeof(float);
|
|
// The outputs' buffers are in CPU memory.
|
|
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
|
|
LOG(INFO) << "data: "
|
|
<< static_cast<float *>(outputs.front().data.data())[i];
|
|
PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
|
|
result[i]);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<std::vector<float>>> link_step_data_all;
|
|
std::vector<std::vector<float>> week_data_all, minute_data_all;
|
|
std::vector<size_t> lod1, lod2, lod3;
|
|
std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
|
|
rnn_minute_datas;
|
|
size_t batch_iter{0};
|
|
size_t batch_size{1};
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: batch_size(batch_size) {
|
|
Load(path);
|
|
}
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= link_step_data_all.size()) {
|
|
data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
|
|
link_step_data_all.begin() + batch_end);
|
|
data.week_data_all.assign(week_data_all.begin() + batch_iter,
|
|
week_data_all.begin() + batch_end);
|
|
data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
|
|
minute_data_all.begin() + batch_end);
|
|
// Prepare LoDs
|
|
data.lod1.push_back(0);
|
|
data.lod2.push_back(0);
|
|
data.lod3.push_back(0);
|
|
CHECK(!data.link_step_data_all.empty()) << "empty";
|
|
CHECK(!data.week_data_all.empty());
|
|
CHECK(!data.minute_data_all.empty());
|
|
CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
|
|
CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
|
|
for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
|
|
for (const auto &d : data.link_step_data_all[j]) {
|
|
data.rnn_link_data.push_back(d);
|
|
}
|
|
data.rnn_week_datas.push_back(data.week_data_all[j]);
|
|
data.rnn_minute_datas.push_back(data.minute_data_all[j]);
|
|
// calculate lod
|
|
data.lod1.push_back(data.lod1.back() +
|
|
data.link_step_data_all[j].size());
|
|
data.lod3.push_back(data.lod3.back() + 1);
|
|
for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
|
|
data.lod2.push_back(data.lod2.back() +
|
|
data.link_step_data_all[j].size());
|
|
}
|
|
}
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ':', &data);
|
|
std::vector<std::vector<float>> link_step_data;
|
|
std::vector<std::string> link_datas;
|
|
split(data[0], '|', &link_datas);
|
|
for (auto &step_data : link_datas) {
|
|
std::vector<float> tmp;
|
|
split_to_float(step_data, ',', &tmp);
|
|
link_step_data.push_back(tmp);
|
|
}
|
|
// load week data
|
|
std::vector<float> week_data;
|
|
split_to_float(data[2], ',', &week_data);
|
|
// load minute data
|
|
std::vector<float> minute_data;
|
|
split_to_float(data[1], ',', &minute_data);
|
|
link_step_data_all.push_back(std::move(link_step_data));
|
|
week_data_all.push_back(std::move(week_data));
|
|
minute_data_all.push_back(std::move(minute_data));
|
|
}
|
|
}
|
|
};
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
|
|
week_tensor, minute_tensor;
|
|
lod_attention_tensor.name = "data_lod_attention";
|
|
init_zero_tensor.name = "cell_init";
|
|
lod_tensor_tensor.name = "data";
|
|
week_tensor.name = "week";
|
|
minute_tensor.name = "minute";
|
|
auto one_batch = data->NextBatch();
|
|
std::vector<int> rnn_link_data_shape(
|
|
{static_cast<int>(one_batch.rnn_link_data.size()),
|
|
static_cast<int>(one_batch.rnn_link_data.front().size())});
|
|
lod_attention_tensor.shape.assign({1, 2});
|
|
lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
|
|
init_zero_tensor.shape.assign({batch_size, 15});
|
|
init_zero_tensor.lod.assign({one_batch.lod3});
|
|
lod_tensor_tensor.shape = rnn_link_data_shape;
|
|
lod_tensor_tensor.lod.assign({one_batch.lod1});
|
|
// clang-format off
|
|
week_tensor.shape.assign(
|
|
{static_cast<int>(one_batch.rnn_week_datas.size()),
|
|
static_cast<int>(one_batch.rnn_week_datas.front().size())});
|
|
week_tensor.lod.assign({one_batch.lod3});
|
|
minute_tensor.shape.assign(
|
|
{static_cast<int>(one_batch.rnn_minute_datas.size()),
|
|
static_cast<int>(one_batch.rnn_minute_datas.front().size())});
|
|
minute_tensor.lod.assign({one_batch.lod3});
|
|
// clang-format on
|
|
// assign data
|
|
TensorAssignData(&lod_attention_tensor,
|
|
std::vector<std::vector<float>>({{0, 0}}));
|
|
std::vector<float> tmp_zeros(batch_size * 15, 0.);
|
|
TensorAssignData(&init_zero_tensor, {tmp_zeros});
|
|
TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data);
|
|
TensorAssignData(&week_tensor, one_batch.rnn_week_datas);
|
|
TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas);
|
|
// Set inputs.
|
|
auto init_zero_tensor1 = init_zero_tensor;
|
|
init_zero_tensor1.name = "hidden_init";
|
|
input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
|
|
init_zero_tensor1, lod_attention_tensor,
|
|
lod_tensor_tensor});
|
|
for (auto &tensor : *input_slots) {
|
|
tensor.dtype = PaddleDType::FLOAT32;
|
|
}
|
|
}
|
|
|
|
std::string DescribeTensor(const PaddleTensor &tensor) {
|
|
std::stringstream os;
|
|
os << "Tensor [" << tensor.name << "]\n";
|
|
os << " - type: ";
|
|
switch (tensor.dtype) {
|
|
case PaddleDType::FLOAT32:
|
|
os << "float32";
|
|
break;
|
|
case PaddleDType::INT64:
|
|
os << "int64";
|
|
break;
|
|
default:
|
|
os << "unset";
|
|
}
|
|
os << '\n';
|
|
|
|
os << " - shape: " << to_string(tensor.shape) << '\n';
|
|
os << " - lod: ";
|
|
for (auto &l : tensor.lod) {
|
|
os << to_string(l) << "; ";
|
|
}
|
|
os << "\n";
|
|
os << " - data: ";
|
|
|
|
int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1,
|
|
[](int a, int b) { return a * b; });
|
|
for (int i = 0; i < dim; i++) {
|
|
os << static_cast<float *>(tensor.data.data())[i] << " ";
|
|
}
|
|
os << '\n';
|
|
return os.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
const float ditu_rnn_target_data[] = {
|
|
104.711, 11.2431, 1.35422, 0, 0, 0, 0, 0,
|
|
27.7039, 1.41486, 7.09526, 0, 0, 0, 0, 0,
|
|
7.6481, 6.5324, 56.383, 2.88018, 8.92918, 132.007, 4.27429, 2.02934,
|
|
14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
|
|
80.0249, 4.77739, 0, 0, 0, 0, 0, 0,
|
|
47.5643, 2.67029, 8.76252, 0, 0, 0, 0, 0,
|
|
51.8822, 4.4411, 0, 0, 0, 0, 0, 0,
|
|
10.7286, 12.0595, 10.6672, 0, 0, 0, 0, 0,
|
|
93.5771, 3.84641, 0, 0, 0, 0, 0, 0,
|
|
169.426, 0, 0, 0, 0, 0, 0, 0};
|
|
// Test with a really complicate model.
|
|
void TestDituRNNPrediction(const std::string &model_path,
|
|
const std::string &data_path, int batch_size,
|
|
bool use_analysis, bool activate_ir,
|
|
int num_times = 1) {
|
|
FLAGS_IA_enable_ir = activate_ir;
|
|
FLAGS_IA_enable_tensorrt_subgraph_engine = false;
|
|
FLAGS_IA_output_storage_path = "./analysis.out";
|
|
|
|
std::string model_out;
|
|
if (use_analysis) {
|
|
Argument argument(model_path);
|
|
argument.model_output_store_path.reset(new std::string("./analysis.out"));
|
|
|
|
Analyzer analyzer;
|
|
analyzer.Run(&argument);
|
|
|
|
// Should get the transformed model stored to ./analysis.out
|
|
model_out = "./analysis.out";
|
|
ASSERT_TRUE(PathExists(model_out));
|
|
} else {
|
|
model_out = FLAGS_infer_ditu_rnn_model;
|
|
}
|
|
|
|
NativeConfig config;
|
|
config.prog_file = model_out + "/__model__";
|
|
config.param_file = model_out + "/param";
|
|
config.use_gpu = false;
|
|
config.device = 0;
|
|
config.specify_input_name = true;
|
|
|
|
auto predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
std::vector<PaddleTensor> input_slots;
|
|
DataRecord data(data_path, batch_size);
|
|
// Prepare inputs.
|
|
PrepareInputs(&input_slots, &data, batch_size);
|
|
std::vector<PaddleTensor> outputs;
|
|
|
|
Timer timer;
|
|
timer.tic();
|
|
for (int i = 0; i < num_times; i++) {
|
|
predictor->Run(input_slots, &outputs);
|
|
}
|
|
LOG(INFO) << "===========profile result===========";
|
|
LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << num_times
|
|
<< ", latency: " << timer.toc() / num_times << "ms";
|
|
LOG(INFO) << "=====================================";
|
|
|
|
for (auto &out : outputs) {
|
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
[](int a, int b) { return a * b; });
|
|
float *data = static_cast<float *>(out.data.data());
|
|
for (size_t i = 0;
|
|
i < std::min(sizeof(ditu_rnn_target_data) / sizeof(float), size);
|
|
i++) {
|
|
EXPECT_NEAR(data[i], ditu_rnn_target_data[i], 1e-3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Turn on the IR pass supportion, run a real inference and check the result.
|
|
TEST(Analyzer, SupportIRPass) {
|
|
FLAGS_IA_enable_ir = true;
|
|
FLAGS_IA_enable_tensorrt_subgraph_engine = false;
|
|
FLAGS_IA_output_storage_path = "./analysis.out";
|
|
|
|
Argument argument(FLAGS_inference_model_dir);
|
|
argument.model_output_store_path.reset(new std::string("./analysis.out"));
|
|
|
|
Analyzer analyzer;
|
|
analyzer.Run(&argument);
|
|
|
|
// Should get the transformed model stored to ./analysis.out
|
|
ASSERT_TRUE(PathExists("./analysis.out"));
|
|
|
|
// Inference from this path.
|
|
TestWord2vecPrediction("./analysis.out");
|
|
}
|
|
|
|
// Directly infer with the original model.
|
|
TEST(Analyzer, DituRNN_without_analysis) {
|
|
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
|
|
FLAGS_batch_size, false, false, FLAGS_repeat);
|
|
}
|
|
|
|
// Inference with the original model with the analysis turned on, the analysis
|
|
// module will transform the program to a data flow graph.
|
|
TEST(Analyzer, DituRNN_with_analysis) {
|
|
LOG(INFO) << "ditu rnn with analysis";
|
|
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
|
|
FLAGS_batch_size, true, false, FLAGS_repeat);
|
|
}
|
|
|
|
// Inference with analysis and IR. The IR module will fuse some large kernels.
|
|
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
|
|
LOG(INFO) << "ditu rnn with analysis and IR fuse";
|
|
TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
|
|
FLAGS_batch_size, true, true, FLAGS_repeat);
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
USE_PASS(fc_fuse_pass);
|
|
USE_PASS(graph_viz_pass);
|
|
USE_PASS(infer_clean_graph_pass);
|