You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_squeeze_op.py

175 lines
4.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
# Correct: General.
class TestSqueezeOp1(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = (0, 2)
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: There is mins axis.
class TestSqueezeOp2(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = (0, -2)
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: No axes input.
class TestSqueezeOp3(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = ()
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Just part of axes be squeezed.
class TestSqueezeOp4(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5, 1, 4, 1)
axes = (2, 6)
new_shape = (1, 3, 5, 1, 4)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Inplace.
class TestSqueezeOpInplace1(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = (0, 2)
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inplace": True}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Inplace. There is mins axis.
class TestSqueezeOpInplace2(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = (0, -2)
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": True}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Inplace. No axes input.
class TestSqueezeOpInplace3(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5)
axes = ()
new_shape = (3, 5)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": True}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Correct: Inpalce. Just part of axes be squeezed.
class TestSqueezeOpInplace4(OpTest):
def setUp(self):
ori_shape = (1, 3, 1, 5, 1, 4, 1)
axes = (2, 6)
new_shape = (1, 3, 5, 1, 4)
self.op_type = "squeeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inpalce": True}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == "__main__":
unittest.main()