You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
19 KiB
496 lines
19 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/var_type.h"
|
|
#include "paddle/fluid/operators/gather.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
struct AppendProposalsFunctor {
|
|
LoDTensor *out_;
|
|
int64_t offset_;
|
|
Tensor *to_add_;
|
|
|
|
AppendProposalsFunctor(LoDTensor *out, int64_t offset, Tensor *to_add)
|
|
: out_(out), offset_(offset), to_add_(to_add) {}
|
|
|
|
template <typename T>
|
|
void apply() const {
|
|
auto *out_data = out_->data<T>();
|
|
auto *to_add_data = to_add_->data<T>();
|
|
memcpy(out_data + offset_, to_add_data, to_add_->numel() * sizeof(T));
|
|
}
|
|
};
|
|
|
|
class GenerateProposalsOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Scores"), "Input(Scores) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("BboxDeltas"),
|
|
"Input(BboxDeltas) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Anchors"),
|
|
"Input(Anchors) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Variances"),
|
|
"Input(Variances) shouldn't be null.");
|
|
|
|
auto scores_dims = ctx->GetInputDim("Scores");
|
|
auto bbox_deltas_dims = ctx->GetInputDim("BboxDeltas");
|
|
auto im_info_dims = ctx->GetInputDim("ImInfo");
|
|
auto anchors_dims = ctx->GetInputDim("Anchors");
|
|
auto variances_dims = ctx->GetInputDim("Variances");
|
|
|
|
ctx->SetOutputDim("RpnRois", {-1, 4});
|
|
ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("Anchors")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors,
|
|
Tensor *bbox_deltas, Tensor *variances, Tensor *proposals) {
|
|
T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int64_t row = all_anchors->dims()[0];
|
|
int64_t len = all_anchors->dims()[1];
|
|
|
|
auto *bbox_deltas_data = bbox_deltas->data<T>();
|
|
auto *anchor_data = all_anchors->data<T>();
|
|
const T *variances_data = nullptr;
|
|
if (variances) {
|
|
variances_data = variances->data<T>();
|
|
}
|
|
|
|
for (int64_t i = 0; i < row; ++i) {
|
|
T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
|
|
T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
|
|
|
|
T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
|
|
T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
|
|
|
|
T bbox_center_x = 0, bbox_center_y = 0;
|
|
T bbox_width = 0, bbox_height = 0;
|
|
|
|
if (variances) {
|
|
bbox_center_x =
|
|
variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
|
|
anchor_center_x;
|
|
bbox_center_y = variances_data[i * len + 1] *
|
|
bbox_deltas_data[i * len + 1] * anchor_height +
|
|
anchor_center_y;
|
|
bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
|
|
bbox_deltas_data[i * len + 2],
|
|
std::log(1000.0 / 16.0))) *
|
|
anchor_width;
|
|
bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
|
|
bbox_deltas_data[i * len + 3],
|
|
std::log(1000.0 / 16.0))) *
|
|
anchor_height;
|
|
} else {
|
|
bbox_center_x =
|
|
bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
|
|
bbox_center_y =
|
|
bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
|
|
bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
|
|
std::log(1000.0 / 16.0))) *
|
|
anchor_width;
|
|
bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
|
|
std::log(1000.0 / 16.0))) *
|
|
anchor_height;
|
|
}
|
|
|
|
proposals_data[i * len] = bbox_center_x - bbox_width / 2;
|
|
proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
|
|
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
|
|
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
|
|
}
|
|
// return proposals;
|
|
}
|
|
|
|
template <class T>
|
|
void ClipTiledBoxes(const platform::DeviceContext &ctx, const Tensor &im_info,
|
|
Tensor *boxes) {
|
|
T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
|
|
const T *im_info_data = im_info.data<T>();
|
|
for (int64_t i = 0; i < boxes->numel(); ++i) {
|
|
if (i % 4 == 0) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[1] - 1), 0.0f);
|
|
} else if (i % 4 == 1) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[0] - 1), 0.0f);
|
|
} else if (i % 4 == 2) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[1] - 1), 0.0f);
|
|
} else {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[0] - 1), 0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void FilterBoxes(const platform::DeviceContext &ctx, Tensor *boxes,
|
|
float min_size, const Tensor &im_info, Tensor *keep) {
|
|
const T *im_info_data = im_info.data<T>();
|
|
T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
|
|
T im_scale = im_info_data[2];
|
|
keep->Resize({boxes->dims()[0]});
|
|
min_size = std::max(min_size, 1.0f);
|
|
int *keep_data = keep->mutable_data<int>(ctx.GetPlace());
|
|
|
|
int keep_len = 0;
|
|
for (int i = 0; i < boxes->dims()[0]; ++i) {
|
|
T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
|
|
T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
|
|
T ws_origin_scale =
|
|
(boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
|
|
T hs_origin_scale =
|
|
(boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
|
|
T x_ctr = boxes_data[4 * i] + ws / 2;
|
|
T y_ctr = boxes_data[4 * i + 1] + hs / 2;
|
|
if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
|
|
x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
|
|
keep_data[keep_len++] = i;
|
|
}
|
|
}
|
|
keep->Resize({keep_len});
|
|
}
|
|
|
|
bool SortScorePairDescend(const std::pair<float, int> &pair1,
|
|
const std::pair<float, int> &pair2) {
|
|
return pair1.first > pair2.first;
|
|
}
|
|
|
|
template <class T>
|
|
void GetMaxScoreIndex(const std::vector<T> &scores,
|
|
std::vector<std::pair<T, int>> *sorted_indices) {
|
|
for (size_t i = 0; i < scores.size(); ++i) {
|
|
sorted_indices->push_back(std::make_pair(scores[i], i));
|
|
}
|
|
// Sort the score pair according to the scores in descending order
|
|
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
|
|
SortScorePairDescend);
|
|
}
|
|
|
|
template <class T>
|
|
T BBoxArea(const T *box, const bool normalized) {
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
// If coordinate values are is invalid
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T w = box[2] - box[0];
|
|
const T h = box[3] - box[1];
|
|
if (normalized) {
|
|
return w * h;
|
|
} else {
|
|
// If coordinate values are not within range [0, 1].
|
|
return (w + 1) * (h + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
T JaccardOverlap(const T *box1, const T *box2, const bool normalized) {
|
|
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
|
|
box2[3] < box1[1]) {
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T inter_xmin = std::max(box1[0], box2[0]);
|
|
const T inter_ymin = std::max(box1[1], box2[1]);
|
|
const T inter_xmax = std::min(box1[2], box2[2]);
|
|
const T inter_ymax = std::min(box1[3], box2[3]);
|
|
const T inter_w = std::max(0.0f, inter_xmax - inter_xmin + 1);
|
|
const T inter_h = std::max(0.0f, inter_ymax - inter_ymin + 1);
|
|
const T inter_area = inter_w * inter_h;
|
|
const T bbox1_area = BBoxArea<T>(box1, normalized);
|
|
const T bbox2_area = BBoxArea<T>(box2, normalized);
|
|
return inter_area / (bbox1_area + bbox2_area - inter_area);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox, Tensor *scores,
|
|
const T nms_threshold, const float eta) {
|
|
PADDLE_ENFORCE_NOT_NULL(bbox);
|
|
int64_t num_boxes = bbox->dims()[0];
|
|
// 4: [xmin ymin xmax ymax]
|
|
int64_t box_size = bbox->dims()[1];
|
|
|
|
std::vector<T> scores_data(num_boxes);
|
|
std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
|
|
std::vector<std::pair<T, int>> sorted_indices;
|
|
GetMaxScoreIndex<T>(scores_data, &sorted_indices);
|
|
|
|
std::vector<int> selected_indices;
|
|
int selected_num = 0;
|
|
T adaptive_threshold = nms_threshold;
|
|
const T *bbox_data = bbox->data<T>();
|
|
bool flag;
|
|
while (sorted_indices.size() != 0) {
|
|
int idx = sorted_indices.front().second;
|
|
flag = true;
|
|
for (size_t k = 0; k < selected_indices.size(); ++k) {
|
|
if (flag) {
|
|
const int kept_idx = selected_indices[k];
|
|
T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
|
|
bbox_data + kept_idx * box_size, false);
|
|
flag = (overlap <= adaptive_threshold);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (flag) {
|
|
selected_indices.push_back(idx);
|
|
selected_num++;
|
|
}
|
|
sorted_indices.erase(sorted_indices.begin());
|
|
if (flag && eta < 1 && adaptive_threshold > 0.5) {
|
|
adaptive_threshold *= eta;
|
|
}
|
|
}
|
|
Tensor keep_nms;
|
|
keep_nms.Resize({selected_num});
|
|
int *keep_data = keep_nms.mutable_data<int>(ctx.GetPlace());
|
|
for (int i = 0; i < selected_num; ++i) {
|
|
keep_data[i] = selected_indices[i];
|
|
}
|
|
|
|
return keep_nms;
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class GenerateProposalsKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto *scores = context.Input<Tensor>("Scores");
|
|
auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
|
|
auto *im_info = context.Input<Tensor>("ImInfo");
|
|
auto *anchors = context.Input<Tensor>("Anchors");
|
|
auto *variances = context.Input<Tensor>("Variances");
|
|
|
|
auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
|
|
auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");
|
|
|
|
int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
|
|
int post_nms_top_n = context.Attr<int>("post_nms_topN");
|
|
float nms_thresh = context.Attr<float>("nms_thresh");
|
|
float min_size = context.Attr<float>("min_size");
|
|
float eta = context.Attr<float>("eta");
|
|
|
|
auto &dev_ctx = context.template device_context<DeviceContext>();
|
|
|
|
auto scores_dim = scores->dims();
|
|
int64_t num = scores_dim[0];
|
|
int64_t c_score = scores_dim[1];
|
|
int64_t h_score = scores_dim[2];
|
|
int64_t w_score = scores_dim[3];
|
|
|
|
auto bbox_dim = bbox_deltas->dims();
|
|
int64_t c_bbox = bbox_dim[1];
|
|
int64_t h_bbox = bbox_dim[2];
|
|
int64_t w_bbox = bbox_dim[3];
|
|
|
|
rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
|
|
context.GetPlace());
|
|
rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
|
|
|
|
Tensor bbox_deltas_swap, scores_swap;
|
|
bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
|
|
dev_ctx.GetPlace());
|
|
scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
|
|
dev_ctx.GetPlace());
|
|
|
|
math::Transpose<DeviceContext, T, 4> trans;
|
|
std::vector<int> axis = {0, 2, 3, 1};
|
|
trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
|
|
trans(dev_ctx, *scores, &scores_swap, axis);
|
|
|
|
framework::LoD lod;
|
|
std::vector<size_t> lod0(1, 0);
|
|
Tensor *anchor = const_cast<framework::Tensor *>(anchors);
|
|
anchor->Resize({anchors->numel() / 4, 4});
|
|
Tensor *var = const_cast<framework::Tensor *>(variances);
|
|
var->Resize({var->numel() / 4, 4});
|
|
|
|
int64_t num_proposals = 0;
|
|
for (int64_t i = 0; i < num; ++i) {
|
|
Tensor im_info_slice = im_info->Slice(i, i + 1);
|
|
Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
|
|
Tensor scores_slice = scores_swap.Slice(i, i + 1);
|
|
|
|
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
|
|
scores_slice.Resize({h_score * w_score * c_score, 1});
|
|
|
|
std::pair<Tensor, Tensor> tensor_pair =
|
|
ProposalForOneImage(dev_ctx, im_info_slice, *anchor, *var,
|
|
bbox_deltas_slice, scores_slice, pre_nms_top_n,
|
|
post_nms_top_n, nms_thresh, min_size, eta);
|
|
Tensor proposals = tensor_pair.first;
|
|
Tensor scores = tensor_pair.second;
|
|
|
|
framework::VisitDataType(
|
|
framework::ToDataType(rpn_rois->type()),
|
|
AppendProposalsFunctor(rpn_rois, 4 * num_proposals, &proposals));
|
|
framework::VisitDataType(
|
|
framework::ToDataType(rpn_roi_probs->type()),
|
|
AppendProposalsFunctor(rpn_roi_probs, num_proposals, &scores));
|
|
|
|
num_proposals += proposals.dims()[0];
|
|
lod0.emplace_back(num_proposals);
|
|
}
|
|
|
|
lod.emplace_back(lod0);
|
|
rpn_rois->set_lod(lod);
|
|
rpn_roi_probs->set_lod(lod);
|
|
rpn_rois->Resize({num_proposals, 4});
|
|
rpn_roi_probs->Resize({num_proposals, 1});
|
|
}
|
|
|
|
std::pair<Tensor, Tensor> ProposalForOneImage(
|
|
const DeviceContext &ctx, const Tensor &im_info_slice,
|
|
const Tensor &anchors, const Tensor &variances,
|
|
const Tensor &bbox_deltas_slice, // [M, 4]
|
|
const Tensor &scores_slice, // [N, 1]
|
|
int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
|
|
float eta) const {
|
|
auto *scores_data = scores_slice.data<T>();
|
|
|
|
// Sort index
|
|
Tensor index_t;
|
|
index_t.Resize({scores_slice.numel()});
|
|
int *index = index_t.mutable_data<int>(ctx.GetPlace());
|
|
for (int i = 0; i < scores_slice.numel(); ++i) {
|
|
index[i] = i;
|
|
}
|
|
std::function<bool(const int64_t &, const int64_t &)> compare =
|
|
[scores_data](const int64_t &i, const int64_t &j) {
|
|
return scores_data[i] > scores_data[j];
|
|
};
|
|
|
|
if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
|
|
std::sort(index, index + scores_slice.numel(), compare);
|
|
} else {
|
|
std::nth_element(index, index + pre_nms_top_n,
|
|
index + scores_slice.numel(), compare);
|
|
index_t.Resize({pre_nms_top_n});
|
|
}
|
|
|
|
Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
|
|
scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
|
|
bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
|
|
CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
|
|
CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
|
|
CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
|
|
CPUGather<T>(ctx, variances, index_t, &var_sel);
|
|
|
|
Tensor proposals;
|
|
proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);
|
|
|
|
ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);
|
|
|
|
Tensor keep;
|
|
FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);
|
|
|
|
Tensor scores_filter;
|
|
bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
|
|
scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, proposals, keep, &bbox_sel);
|
|
CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
|
|
if (nms_thresh <= 0) {
|
|
return std::make_pair(bbox_sel, scores_filter);
|
|
}
|
|
|
|
Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);
|
|
|
|
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
|
|
keep_nms.Resize({post_nms_top_n});
|
|
}
|
|
|
|
proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
|
|
scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
|
|
CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);
|
|
|
|
return std::make_pair(proposals, scores_sel);
|
|
}
|
|
};
|
|
|
|
class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Scores", "The scores of anchors should be foreground.");
|
|
AddInput("BboxDeltas", "bbox_deltas.");
|
|
AddInput("ImInfo", "Information for image reshape.");
|
|
AddInput("Anchors", "All anchors.");
|
|
AddInput("Variances", " variances");
|
|
|
|
AddOutput("RpnRois", "Anchors.");
|
|
AddOutput("RpnRoiProbs", "Anchors.");
|
|
AddAttr<int>("pre_nms_topN", "pre_nms_topN");
|
|
AddAttr<int>("post_nms_topN", "post_nms_topN");
|
|
AddAttr<float>("nms_thresh", "nms_thres");
|
|
AddAttr<float>("min_size", "min size");
|
|
AddAttr<float>("eta", "The parameter for adaptive NMS.");
|
|
AddComment(R"DOC(
|
|
Generate Proposals OP
|
|
|
|
This operator proposes rois according to each box with their probability to be a foreground object and
|
|
the box can be calculated by anchors. Bbox_deltais and scores are the output of RPN. Final proposals
|
|
could be used to train detection net.
|
|
|
|
Scores is the probability for each box to be an object. In format of (N, A, H, W) where N is batch size, A is number
|
|
of anchors, H and W are height and width of the feature map.
|
|
BboxDeltas is the differece between predicted box locatoin and anchor location. In format of (N, 4*A, H, W)
|
|
|
|
For generating proposals, this operator transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4) and
|
|
calculate box locations as proposals candidates. Then clip boxes to image and remove predicted boxes with small area.
|
|
Finally, apply nms to get final proposals as output.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(generate_proposals, ops::GenerateProposalsOp,
|
|
ops::GenerateProposalsOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
generate_proposals,
|
|
ops::GenerateProposalsKernel<paddle::platform::CPUDeviceContext, float>);
|