You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/softmax_with_cross_entropy_...

240 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/fluid/operators/softmax_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_cpu_place(context.GetPlace()), true,
platform::errors::Unimplemented("This kernel only runs on CPU."));
const bool softmax_switch = context.Attr<bool>("softmax_switch");
// do not with softmax op, and input is softmax
if (!softmax_switch) {
const Tensor* softmax = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax_out = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss");
const bool soft_label = context.Attr<bool>("soft_label");
const int rank = softmax->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
int axis_dim = softmax->dims()[axis];
softmax_out->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, softmax->dims());
const int d = SizeFromAxis(axis, softmax->dims());
Tensor softmax_2d, labels_2d, loss_2d, softmax_out_2d;
softmax_2d.ShareDataWith(*softmax).Resize({n, d});
labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
loss_2d.ShareDataWith(*loss).Resize({n, d / axis_dim});
softmax_out_2d.ShareDataWith(*softmax_out).Resize({n, d});
auto& dev_ctx =
context.template device_context<platform::CPUDeviceContext>();
math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
dev_ctx, &loss_2d, &softmax_2d, &labels_2d, soft_label,
context.Attr<int>("ignore_index"), axis_dim);
// cause of input is softmax
// copy to output softmax, directly
framework::TensorCopy(*softmax, context.GetPlace(),
context.device_context(), softmax_out);
return;
}
const Tensor* logits = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss");
const bool soft_label = context.Attr<bool>("soft_label");
const int rank = logits->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
int axis_dim = logits->dims()[axis];
softmax->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace());
const int n = SizeToAxis(axis, logits->dims());
const int d = SizeFromAxis(axis, logits->dims());
Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
logits_2d.ShareDataWith(*logits).Resize({n, d});
softmax_2d.ShareDataWith(*softmax).Resize({n, d});
labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
loss_2d.ShareDataWith(*loss).Resize({n, d / axis_dim});
auto& dev_ctx =
context.template device_context<platform::CPUDeviceContext>();
math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
dev_ctx, axis_dim, &logits_2d, &softmax_2d);
math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
dev_ctx, &loss_2d, &softmax_2d, &labels_2d, soft_label,
context.Attr<int>("ignore_index"), axis_dim);
}
};
template <typename T>
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* out_grad =
context.Input<Tensor>(framework::GradVarName("Loss"));
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* logit_grad =
context.Output<Tensor>(framework::GradVarName("Logits"));
const Tensor* softmax = context.Input<Tensor>("Softmax");
const bool softmax_switch = context.Attr<bool>("softmax_switch");
if (logit_grad != softmax || !softmax_switch) {
framework::TensorCopy(*softmax, context.GetPlace(),
context.device_context(), logit_grad);
}
const bool soft_label = context.Attr<bool>("soft_label");
auto ignore_index = context.Attr<int>("ignore_index");
const int rank = logit_grad->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
int axis_dim = logit_grad->dims()[axis];
const int n = SizeToAxis(axis, logit_grad->dims());
const int d = SizeFromAxis(axis, logit_grad->dims());
Tensor logit_grad_2d, labels_2d, out_grad_2d;
logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim});
auto out_grad_mat = framework::EigenMatrix<T>::From(out_grad_2d);
auto logit_grad_mat = framework::EigenMatrix<T>::From(logit_grad_2d);
auto& place = *context.template device_context<platform::CPUDeviceContext>()
.eigen_device();
if (!softmax_switch) {
// softmax_switch step1
if (soft_label) {
auto lbl_mat = framework::EigenMatrix<T>::From(labels_2d);
logit_grad_mat.device(place) =
(-lbl_mat / logit_grad_mat); // for each sample ,i is sample id
logit_grad_mat.device(place) =
out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)) *
logit_grad_mat;
}
// softmax_switch step2
else {
const int64_t* label_data = labels->data<int64_t>();
T* logit_grad_data = logit_grad->data<T>();
const T* out_grad_data = out_grad->data<T>();
const int remain = d / axis_dim;
for (int i = 0; i < n; ++i) { // for each sample_1_dim
for (int j = 0; j < remain; j++) { // for each sample_other_dims
int idx = i * remain + j; // this sample's label_idx. for 1d case,
// remain=1 and j=0, so, idx = i
if (label_data[idx] == ignore_index) {
for (int k = 0; k < axis_dim; ++k) { // for each class id's label
logit_grad_data[i * d + k * remain + j] = 0;
}
} else {
// only for this sample's label_idx, the label is 1, others is 0,
// so, only compute this label_idx's class
logit_grad_data[i * d + label_data[idx] * remain + j] =
(-1 / logit_grad_data[i * d + label_data[idx] * remain + j]) *
out_grad_data[idx];
for (int k = 0; k < axis_dim; ++k) { // for each class id's label
if (k !=
label_data[idx]) { // label_data[idx]: this sample's label
logit_grad_data[i * d + k * remain + j] = 0;
}
}
}
}
}
}
return;
}
// for softmax_switch=False, continue
if (soft_label) {
// when soft_label = True, ignore_index is not supported
auto lbl_mat = framework::EigenMatrix<T>::From(labels_2d);
logit_grad_mat.device(place) =
out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)) *
(logit_grad_mat - lbl_mat); // for each sample ,i is sample id
// 1) compute dy/dx by p_j - y_j or P-Y, where j is class id,
// P=logit_grad_mat[i] is all class's probs, Y=lbl_mat[i] is
// all class's labels
// 2) compute dy * dy/dx by Chain rule, dy=out_grad_mat[i]
// for high dims, e.g. (n,c) or (n,d1,...,dm, c), compute grad by matrix
// operation
} else {
logit_grad_mat.device(place) =
logit_grad_mat * // element_wise multiply
out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim));
const int64_t* label_data = labels->data<int64_t>();
T* logit_grad_data = logit_grad->data<T>();
const T* out_grad_data = out_grad->data<T>();
const int remain = d / axis_dim;
for (int i = 0; i < n; ++i) { // for each sample_1_dim
for (int j = 0; j < remain; j++) { // for each sample_other_dims
int idx = i * remain + j; // this sample's label_idx. for 1d case,
// remain=1 and j=0, so, idx = i
if (label_data[idx] == ignore_index) {
for (int k = 0; k < axis_dim; ++k) { // for each class id's label
logit_grad_data[i * d + k * remain + j] = 0;
}
} else {
// only for this sample's label_idx, the label is 1, others is 0,
// so, only compute this label_idx's class
// for 1d case, remain=1 and j=0, so, [i * d + label_data[idx] *
// remain + j] = [i * d + label_data[idx]]
// let idx_x = i * d + label_data[idx] * remain + j,
// logit_grad_data[idx_x] = logit_grad_data[idx_x] -
// out_grad_data[idx]
// note: logit_grad_mat = logit_grad_mat * out_grad_mat
// so: logit_grad_data[idx_x] = (logit_grad_data[idx_x] - 1) *
// out_grad_data[idx]
// means: dy/dp * dy= ( p - y ) * dy
logit_grad_data[i * d + label_data[idx] * remain + j] -=
out_grad_data[idx];
}
}
}
}
}
};
} // namespace operators
} // namespace paddle