You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
7.6 KiB
260 lines
7.6 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
// clang-format off
|
|
#include "paddle/fluid/framework/python_headers.h"
|
|
// clang-format on
|
|
|
|
#include <map> // NOLINT
|
|
#include <string> // NOLINT
|
|
#include <vector> // NOLINT
|
|
#include <memory> // NOLINT
|
|
|
|
#include "paddle/fluid/framework/op_desc.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/framework/var_desc.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
#include "paddle/fluid/imperative/type_defs.h"
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
class VarBase;
|
|
|
|
namespace py = ::pybind11;
|
|
|
|
class PreparedOp {
|
|
public:
|
|
PreparedOp(const framework::OperatorBase& op,
|
|
const framework::RuntimeContext& ctx,
|
|
framework::OperatorWithKernel::OpKernelFunc func,
|
|
platform::DeviceContext* dev_ctx)
|
|
: op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}
|
|
|
|
static PreparedOp Prepare(const framework::RuntimeContext& ctx,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place) {
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = pool.Get(place);
|
|
|
|
// check if op[type] has kernel registered.
|
|
auto& all_op_kernels = op.AllOpKernels();
|
|
auto kernels_iter = all_op_kernels.find(op.Type());
|
|
if (kernels_iter == all_op_kernels.end()) {
|
|
PADDLE_THROW(
|
|
"There are no kernels which are registered in the %s operator.",
|
|
op.Type());
|
|
}
|
|
|
|
framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;
|
|
|
|
auto expected_kernel_key = op.GetExpectedKernelType(
|
|
framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
|
|
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
|
|
|
|
auto kernel_iter = kernels.find(expected_kernel_key);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
// workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
|
|
if (kernel_iter == kernels.end() &&
|
|
expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
|
|
VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
|
|
expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
|
|
expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
|
|
kernel_iter = kernels.find(expected_kernel_key);
|
|
}
|
|
#endif
|
|
if (kernel_iter == kernels.end()) {
|
|
PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
|
|
KernelTypeToString(expected_kernel_key));
|
|
}
|
|
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
|
|
}
|
|
|
|
inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }
|
|
|
|
const framework::OperatorBase& op;
|
|
const framework::RuntimeContext& ctx;
|
|
framework::OperatorWithKernel::OpKernelFunc func;
|
|
platform::DeviceContext* dev_ctx;
|
|
};
|
|
|
|
class OpBase;
|
|
|
|
/* The wrapper for Variable which holds a Variable and a VarBase of its
|
|
* gradient. This object should be managed totally by Python intepreter.
|
|
*
|
|
* Nearly all interface should be implemented in C++.
|
|
*/
|
|
class VarBase {
|
|
public:
|
|
VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
|
|
|
|
explicit VarBase(bool stop_gradient)
|
|
: VarBase(new framework::Variable(),
|
|
stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}
|
|
|
|
VarBase(framework::Variable* var, VarBase* grad)
|
|
: VarBase(var, grad, false) {}
|
|
|
|
private:
|
|
VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
|
|
: var_desc_(nullptr),
|
|
var_(var),
|
|
grads_(grad),
|
|
stop_gradient_(stop_gradient),
|
|
pre_op_(nullptr),
|
|
pre_op_out_idx_(-1) {}
|
|
|
|
public:
|
|
virtual ~VarBase() {
|
|
if (var_) {
|
|
delete var_;
|
|
}
|
|
|
|
if (grads_) {
|
|
delete grads_;
|
|
}
|
|
}
|
|
|
|
inline OpBase* PreOp() const { return pre_op_; }
|
|
inline int PreOpOutIdx() const { return pre_op_out_idx_; }
|
|
|
|
inline void SetStopGradient(bool stop_gradient) {
|
|
stop_gradient_ = stop_gradient;
|
|
}
|
|
inline bool IsStopGradient() const { return stop_gradient_; }
|
|
|
|
void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
|
|
int pre_op_out_idx, bool pre_op_stop_gradient) {
|
|
pre_op_ = pre_op;
|
|
pre_op_out_name_ = pre_op_out_name;
|
|
pre_op_out_idx_ = pre_op_out_idx;
|
|
if (pre_op_stop_gradient) {
|
|
stop_gradient_ = pre_op_stop_gradient;
|
|
}
|
|
}
|
|
|
|
void RunBackward();
|
|
|
|
void ClearGradient();
|
|
|
|
framework::LoDTensor& GradValue();
|
|
|
|
std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
|
|
const bool blocking) const;
|
|
|
|
inline std::string GradName() const {
|
|
PADDLE_ENFORCE(
|
|
var_desc_,
|
|
"Couldn't get gradient variable's name, please call backward() first");
|
|
return string::Sprintf("%s@IGrad", var_desc_->Name());
|
|
}
|
|
|
|
framework::VarDesc* var_desc_;
|
|
|
|
framework::Variable* var_;
|
|
VarBase* grads_;
|
|
|
|
private:
|
|
bool stop_gradient_;
|
|
OpBase* pre_op_;
|
|
std::string pre_op_out_name_;
|
|
int pre_op_out_idx_;
|
|
};
|
|
|
|
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
|
|
* gradient. This object should be managed totally by Python intepreter.
|
|
*/
|
|
class OpBase {
|
|
public:
|
|
OpBase()
|
|
: op_desc_(nullptr),
|
|
forward_id_(-1),
|
|
backward_id_(-1),
|
|
place_(platform::CPUPlace()) {}
|
|
|
|
virtual ~OpBase() {
|
|
for (framework::OpDesc* desc : grad_op_descs_) {
|
|
delete desc;
|
|
}
|
|
}
|
|
|
|
std::map<std::string, std::vector<VarBase*>> ApplyGrad();
|
|
|
|
// One of `op_desc_` or `forward_id_` is set, not both.
|
|
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
|
|
framework::OpDesc* op_desc_;
|
|
int forward_id_;
|
|
|
|
// When has backward, one of `grad_op_descs_` or `backward_id_` is set,
|
|
// not both.
|
|
// Note: each fwd op corresponds to a vector of bwd ops.
|
|
std::vector<framework::OpDesc*> grad_op_descs_;
|
|
int backward_id_;
|
|
|
|
platform::Place place_;
|
|
|
|
VarBasePtrMap input_vars_;
|
|
VarBasePtrMap output_vars_;
|
|
OpBasePtrMap pre_ops_;
|
|
std::map<std::string, std::vector<int>> pre_ops_out_idx_;
|
|
|
|
// Inputs to a vector of bwd ops.
|
|
std::vector<framework::VariableValueMap> grad_input_vars_;
|
|
// Outputs to a vector of bwd ops.
|
|
std::vector<framework::VariableValueMap> grad_output_vars_;
|
|
|
|
framework::BlockDesc* block_;
|
|
};
|
|
|
|
class Layer {
|
|
public:
|
|
virtual ~Layer() {}
|
|
|
|
virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
|
|
std::vector<VarBase> vars;
|
|
return vars;
|
|
}
|
|
};
|
|
|
|
class PyLayer {
|
|
public:
|
|
virtual ~PyLayer() {}
|
|
|
|
static const char* kFwdInp;
|
|
static const char* kFwdOut;
|
|
|
|
static void RegisterFunc(int func_id, const py::object& py_func);
|
|
|
|
static int NumFuncs();
|
|
|
|
static std::vector<VarBase*> Apply(int func_id,
|
|
const std::vector<VarBase*>& inputs);
|
|
|
|
static std::vector<framework::Variable*> ApplyGrad(
|
|
int func_id, const std::vector<framework::Variable*>& inputs);
|
|
|
|
private:
|
|
static std::vector<framework::Variable*> CallPythonFunc(
|
|
const py::object& callable, const std::vector<framework::Variable*>& ins);
|
|
};
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|