You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/set_value_op.cc

189 lines
7.5 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/set_value_op.h"
#include <string>
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
template <typename T>
class EmptyGradOpMaker;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
class SetValue : public framework::OperatorWithKernel {
public:
SetValue(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "SetValue");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SetValue");
auto in_dims = ctx->GetInputDim("Input");
PADDLE_ENFORCE_LT(
in_dims.size(), 7,
platform::errors::InvalidArgument(
"The rank of input should be less than 7, but received %d.",
in_dims.size()));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "StartsTensorList" || var_name == "EndsTensorList" ||
var_name == "StepsTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class SetValueMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
// Input
AddInput("Input", "(Tensor) Input tensor of set_value operator.");
AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.")
.AsDispensable();
AddInput("StartsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must be [1]."
"It has higher priority compare with attr(starts).")
.AsDuplicable()
.AsDispensable();
AddInput("EndsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must BE [1]."
"It has higher priority compare with attr(ends).")
.AsDuplicable()
.AsDispensable();
AddInput("StepsTensorList",
"(vector<Tensor<int32>>, optional) If provided, set_value will "
"use this. The shape of the tensor in vector must BE [1]."
"It has higher priority compare with attr(steps).")
.AsDuplicable()
.AsDispensable();
// Output
AddOutput("Out",
"(Tensor) Output tensor of set_value operator. The output is the "
"same Tensor as input");
// Attr
AddAttr<int>("dtype", "data type of input.")
.InEnum(
{framework::proto::VarType::BOOL, framework::proto::VarType::INT32,
framework::proto::VarType::INT64, framework::proto::VarType::FP32,
framework::proto::VarType::FP64})
.SetDefault(framework::proto::VarType::FP32);
AddAttr<std::vector<int64_t>>(
"axes", "(list<int64_t>) Axes that `starts` and `ends` apply to.");
AddAttr<std::vector<int64_t>>(
"starts",
"(list<int64_t>) Starting indices of corresponding axis in `axes`.")
.SetDefault({});
AddAttr<std::vector<int64_t>>(
"ends",
"(list<int64_t>) Ending indices of corresponding axis in `axes`.")
.SetDefault({});
AddAttr<std::vector<int64_t>>(
"steps", "(list<int64_t>) Stride step from the start to the end.")
.SetDefault({});
AddAttr<std::vector<int>>("bool_values", "Store the bool values.")
.SetDefault({});
AddAttr<std::vector<float>>("fp32_values", "Store the float32 values.")
.SetDefault({});
AddAttr<std::vector<int>>("int32_values", "Store the int32 values.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("int64_values", "Store the int64 values.")
.SetDefault({});
AddAttr<std::vector<double>>("fp64_values", "Store the float64 values.")
.SetDefault({});
AddAttr<std::vector<int64_t>>("shape", "(vector<int64_t>) Shape of values.")
.SetDefault({});
AddComment(R"DOC(SetValue operator.
Assignment to a Tensor in static mode.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
set_value, ops::SetValue, ops::SetValueMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
set_value, ops::SetValueKernel<paddle::platform::CPUDeviceContext, int>,
ops::SetValueKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::SetValueKernel<paddle::platform::CPUDeviceContext, float>,
ops::SetValueKernel<paddle::platform::CPUDeviceContext, double>,
ops::SetValueKernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_VERSION(set_value)
.AddCheckpoint(
R"ROC(
Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps].
)ROC",
paddle::framework::compatible::OpVersionDesc()
.NewInput("StartsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(starts).")
.NewInput("EndsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(ends).")
.NewInput("StepsTensorList",
"If provided, set_value will use this.The shape of the "
"tensor in vector must be [1]. It has higher priority "
"compare with attr(steps).")
.ModifyAttr("starts",
"Starting indices of corresponding axis in `axes`.",
std::vector<int64_t>{})
.ModifyAttr("ends",
"Ending indices of corresponding axis in `axes`.",
std::vector<int64_t>{})
.NewAttr("steps", "Stride step from the start to the end.",
std::vector<int64_t>{}));