You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/base.py

199 lines
5.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import contextlib
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
from .tracer import Tracer
import logging
import objgraph
__all__ = [
'no_grad',
'guard',
'to_variable',
]
# This function should be removed in V1.6, because it can easily lead to cyclic dependencies.
def enabled():
# Internal use only
return framework.in_dygraph_mode()
@contextlib.contextmanager
def _switch_tracer_mode_guard_(is_train=True):
tracer = framework._dygraph_tracer()
if tracer:
mode = tracer._train_mode
tracer._train_mode = is_train
yield
tracer._train_mode = mode
else:
yield
def _no_grad_(func):
"""
This Decorator will avoid the func being decorated creating backward network in dygraph mode
Parameter:
- **func** (python func): the func don't need grad
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
@fluid.dygraph.no_grad
def test_layer():
with fluid.dygraph.guard():
inp = np.ones([3, 32, 32], dtype='float32')
t = fluid.dygraph.base.to_variable(inp)
fc1 = fluid.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
fc2 = fluid.FC('fc2', size=4)
ret = fc1(t)
dy_ret = fc2(ret)
test_layer()
"""
def __impl__(*args, **kwargs):
with _switch_tracer_mode_guard_(is_train=False):
return func(*args, **kwargs)
return __impl__
no_grad = wrap_decorator(_no_grad_)
# for fluidDoc
no_grad.__doc__ = _no_grad_.__doc__
@signature_safe_contextmanager
def guard(place=None):
"""
This context will create a dygraph context for dygraph to run
Args:
place(fluid.CPUPlace|fluid.CUDAPlace|None): Place to run
return:
None
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
with fluid.dygraph.guard():
inp = np.ones([3, 32, 32], dtype='float32')
t = fluid.dygraph.base.to_variable(inp)
fc1 = fluid.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
fc2 = fluid.FC('fc2', size=4)
ret = fc1(t)
dy_ret = fc2(ret)
"""
train = framework.Program()
startup = framework.Program()
tracer = Tracer()
if place is None:
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with framework.program_guard(train, startup):
with framework.unique_name.guard():
with framework._dygraph_guard(tracer):
with framework._dygraph_place_guard(place):
yield
def _print_debug_msg(limit=5, is_test=False):
if not core._is_dygraph_debug_enabled():
logging.warn(
'Debug mode is not enabled. Please set FLAGS_dygraph_debug=1 to enable debug'
)
return
unique_name_size = len(framework.unique_name.generator.ids)
tracer_var_size = len(framework._dygraph_tracer()._vars)
alive_cpp_var_size = len(core.VarBase._alive_vars())
if not is_test:
logging.warn(
'unique_name num: {}, tracer vars num: {}, alive cpp vars num: {}'
.format(unique_name_size, tracer_var_size, alive_cpp_var_size))
objgraph.show_growth(limit=limit)
else:
return unique_name_size, tracer_var_size, alive_cpp_var_size
@framework.dygraph_only
def to_variable(value, block=None, name=None):
"""
This function will create a variable from ndarray
Args:
value(ndarray): the numpy value need to be convert
block(fluid.Block|None): which block this variable will be in
name(str|None): Name of Variable
return:
Variable: The variable created from given numpy
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
with fluid.dygraph.guard():
x = np.ones([2, 2], np.float32)
y = fluid.dygraph.to_variable(x)
"""
if isinstance(value, np.ndarray):
assert framework.in_dygraph_mode(
), "to_variable could only be called in dygraph mode"
if not block:
block = framework.default_main_program().current_block()
py_var = framework.Variable(
block,
type=core.VarDesc.VarType.LOD_TENSOR,
name=name,
shape=value.shape,
dtype=value.dtype,
stop_gradient=True)
var = py_var._ivar.value()
tensor = var.get_tensor()
if value.dtype == np.float16:
value = value.view(np.uint16)
tensor.set(value, framework._current_expected_place())
return py_var
elif isinstance(value, framework.Variable):
return value
else:
raise TypeError(
"to_variable only accepts 'ndarray' and 'Variable' as value's input")