You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
8.7 KiB
251 lines
8.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except jin compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import six
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
from .. import core
|
|
from . import layers
|
|
from . import parallel_helper
|
|
from .. import framework
|
|
from ..layers import collective
|
|
from . import to_variable, no_grad
|
|
|
|
__all__ = ["prepare_context"]
|
|
|
|
ParallelStrategy = core.ParallelStrategy
|
|
|
|
|
|
def prepare_context(strategy=None):
|
|
if strategy is None:
|
|
strategy = ParallelStrategy()
|
|
strategy.nranks = Env().nranks
|
|
strategy.local_rank = Env().local_rank
|
|
strategy.trainer_endpoints = Env().trainer_endpoints
|
|
strategy.current_endpoint = Env().current_endpoint
|
|
if strategy.nranks < 2:
|
|
return
|
|
assert framework.in_dygraph_mode() is True, \
|
|
"dygraph.parallel.prepare_context should be used with dygrahp mode."
|
|
place = framework._current_expected_place()
|
|
assert place is not None, \
|
|
"dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
|
|
if isinstance(place, core.CUDAPlace):
|
|
parallel_helper._set_parallel_ctx(
|
|
core.NCCLParallelContext(strategy, place))
|
|
else:
|
|
# TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
|
|
assert ("Only support CUDAPlace for now.")
|
|
parallel_helper._init_parallel_ctx()
|
|
return strategy
|
|
|
|
|
|
class Env(object):
|
|
def __init__(self):
|
|
self._nranks = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
|
|
self._local_rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
|
|
self._dev_id = int(os.getenv("FLAGS_selected_gpus", "0"))
|
|
self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
|
|
"").split(",")
|
|
self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
|
|
|
|
@property
|
|
def nranks(self):
|
|
return self._nranks
|
|
|
|
@property
|
|
def local_rank(self):
|
|
return self._local_rank
|
|
|
|
@property
|
|
def dev_id(self):
|
|
return self._dev_id
|
|
|
|
@property
|
|
def current_endpoint(self):
|
|
return self._current_endpoint
|
|
|
|
@property
|
|
def trainer_endpoints(self):
|
|
return self._trainer_endpoints
|
|
|
|
|
|
class DataParallel(layers.Layer):
|
|
"""
|
|
Runs the module with data parallelism.
|
|
|
|
Currently, DataParallel only supports to run the dynamic graph
|
|
with multi-process. The usage is:
|
|
`python -m paddle.distributed.launch --gpus 2 dynamic_graph_test.py`.
|
|
And the content of `dynamic_graph_test.py` is the code of examples.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dygraph
|
|
from paddle.fluid.optimizer import AdamOptimizer
|
|
from paddle.fluid.dygraph.nn import FC
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
with fluid.dygraph.guard(place=place):
|
|
|
|
# prepare the data parallel context
|
|
strategy=dygraph.parallel.prepare_context()
|
|
|
|
fc_layer = FC("FC", 10, act="softmax")
|
|
adam = fluid.optimizer.AdamOptimizer()
|
|
|
|
# make the module become the data parallelism module
|
|
fc_layer = dygraph.parallel.DataParallel(fc_layer, strategy)
|
|
|
|
x_data = np.random.random(size=[10, 1]).astype(np.float32)
|
|
data = to_variable(x_data)
|
|
|
|
hidden = fc_layer(data)
|
|
avg_loss = fluid.layers.mean(hidden)
|
|
|
|
# scale the loss according to the number of trainers.
|
|
avg_loss = fc_layer.scale_loss(avg_loss)
|
|
|
|
avg_loss.backward()
|
|
|
|
# collect the gradients of trainers.
|
|
fc_layer.apply_collective_grads()
|
|
|
|
adam.minimize(avg_loss)
|
|
fc_layer.clear_gradients()
|
|
|
|
Args:
|
|
layers(Layer): The module that should be executed by data parallel.
|
|
strategy(ParallelStrategy): The strategy of data parallelism.
|
|
|
|
Returns:
|
|
Layer: The data paralleled module.
|
|
"""
|
|
|
|
def __init__(self, layers, strategy):
|
|
super(DataParallel,
|
|
self).__init__(layers.full_name() + "_data_parallel")
|
|
|
|
self._layers = layers
|
|
self._strategy = strategy
|
|
|
|
def forward(self, *inputs, **kwargs):
|
|
return self._layers(*inputs, **kwargs)
|
|
|
|
def scale_loss(self, loss):
|
|
"""
|
|
Scale the loss. In data parallel mode, the loss should be scale with
|
|
the number of trainers. If not in data parallel mode, return the loss
|
|
directly.
|
|
|
|
Args:
|
|
loss(Layer): The loss of the current Model.
|
|
|
|
Returns:
|
|
Layer: the scaled loss.
|
|
"""
|
|
if not self._is_data_parallel_mode():
|
|
return loss
|
|
|
|
loss_scale = to_variable(
|
|
np.array([self._strategy.nranks]).astype("float32"))
|
|
loss_scale.stop_gradient = True
|
|
loss = loss / loss_scale
|
|
return loss
|
|
|
|
def _coalesce_tensors(self, var_groups):
|
|
from ..layers import nn
|
|
coalesced_grads_and_grad_vars = []
|
|
for group_id, grad_vars in var_groups.items():
|
|
flattened_vars = []
|
|
g_var_shapes = []
|
|
for g_var in grad_vars:
|
|
g_var_shapes.append(g_var.shape)
|
|
flattened_vars.append(
|
|
nn.reshape(
|
|
x=g_var, shape=[np.prod(g_var.shape)], inplace=True))
|
|
coalesced_grad = nn.concat(flattened_vars)
|
|
coalesced_grads_and_grad_vars.append(
|
|
[coalesced_grad, grad_vars, g_var_shapes])
|
|
return coalesced_grads_and_grad_vars
|
|
|
|
def _split_tensors(self, coalesced_grads_and_grad_vars):
|
|
from ..layers import nn
|
|
for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
|
|
grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
|
|
self._helper.main_program.current_block().append_op(
|
|
type='split',
|
|
inputs={'X': coalesced_grad},
|
|
outputs={'Out': origin_grad_vars},
|
|
attrs={'sections': grad_var_len,
|
|
'axis': 0})
|
|
for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
|
|
nn.reshape(x=g_var, shape=g_shape, inplace=True)
|
|
|
|
@no_grad
|
|
def apply_collective_grads(self):
|
|
"""
|
|
AllReduce the Parameters' gradient.
|
|
"""
|
|
if not self._is_data_parallel_mode():
|
|
return
|
|
|
|
grad_var_set = set()
|
|
grad_vars = []
|
|
for param in self._layers.parameters():
|
|
# NOTE(zcd): The grad_ivar maybe no generated.
|
|
if param.trainable and param._ivar._grad_ivar():
|
|
g_var = framework.Variable(
|
|
block=self._helper.main_program.current_block(),
|
|
name=param._ivar._grad_name(),
|
|
stop_gradient=True,
|
|
ivar=param._ivar._grad_ivar())
|
|
grad_vars.append(g_var)
|
|
assert g_var not in grad_var_set
|
|
grad_var_set.add(g_var)
|
|
|
|
# FIXME(zcd): the type of the var should be LoDTensor, i.e
|
|
# the gradients should be dense, otherwise, the following
|
|
# logic should be updated.
|
|
# 128 MB as a group
|
|
mega_bytes = 128 * 1024 * 1024
|
|
group_idx = 0
|
|
memory_counter = 0
|
|
grad_var_groups = OrderedDict()
|
|
dtype = grad_vars[0].dtype
|
|
for g_var in grad_vars:
|
|
# Note: the dtype of the same group should be the same.
|
|
bytes = np.prod(g_var.shape) * core.size_of_dtype(g_var.dtype)
|
|
if memory_counter < mega_bytes and dtype == g_var.dtype:
|
|
memory_counter += bytes
|
|
else:
|
|
memory_counter = bytes
|
|
group_idx += 1
|
|
grad_var_groups.setdefault(group_idx, []).append(g_var)
|
|
|
|
coalesced_grads_and_vars = self._coalesce_tensors(grad_var_groups)
|
|
|
|
for coalesced_grad, g_vars, g_shapes in coalesced_grads_and_vars:
|
|
collective._allreduce(
|
|
coalesced_grad, coalesced_grad, sync_mode=False)
|
|
|
|
self._split_tensors(coalesced_grads_and_vars)
|
|
|
|
def _is_data_parallel_mode(self):
|
|
return self._strategy.nranks > 1
|