You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
7.1 KiB
171 lines
7.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import math
|
|
import sys
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestROIAlignOp(OpTest):
|
|
def set_data(self):
|
|
self.init_test_case()
|
|
self.make_rois()
|
|
self.calc_roi_align()
|
|
self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
|
|
self.attrs = {
|
|
'spatial_scale': self.spatial_scale,
|
|
'pooled_height': self.pooled_height,
|
|
'pooled_width': self.pooled_width,
|
|
'sampling_ratio': self.sampling_ratio
|
|
}
|
|
|
|
self.outputs = {'Out': self.out_data}
|
|
|
|
def init_test_case(self):
|
|
self.batch_size = 3
|
|
self.channels = 3
|
|
self.height = 8
|
|
self.width = 6
|
|
|
|
# n, c, h, w
|
|
self.x_dim = (self.batch_size, self.channels, self.height, self.width)
|
|
|
|
self.spatial_scale = 1.0 / 2.0
|
|
self.pooled_height = 2
|
|
self.pooled_width = 2
|
|
self.sampling_ratio = -1
|
|
|
|
self.x = np.random.random(self.x_dim).astype('float32')
|
|
|
|
def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
|
|
bin_size_h, bin_size_w):
|
|
count = roi_bin_grid_h * roi_bin_grid_w
|
|
bilinear_pos = np.zeros(
|
|
[self.channels, self.pooled_height, self.pooled_width, count, 4],
|
|
np.float32)
|
|
bilinear_w = np.zeros(
|
|
[self.pooled_height, self.pooled_width, count, 4], np.float32)
|
|
for ph in range(self.pooled_width):
|
|
for pw in range(self.pooled_height):
|
|
c = 0
|
|
for iy in range(roi_bin_grid_h):
|
|
y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
|
|
bin_size_h / roi_bin_grid_h
|
|
for ix in range(roi_bin_grid_w):
|
|
x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
|
|
bin_size_w / roi_bin_grid_w
|
|
if y < -1.0 or y > self.height or \
|
|
x < -1.0 or x > self.width:
|
|
continue
|
|
if y <= 0:
|
|
y = 0
|
|
if x <= 0:
|
|
x = 0
|
|
y_low = int(y)
|
|
x_low = int(x)
|
|
if y_low >= self.height - 1:
|
|
y = y_high = y_low = self.height - 1
|
|
else:
|
|
y_high = y_low + 1
|
|
if x_low >= self.width - 1:
|
|
x = x_high = x_low = self.width - 1
|
|
else:
|
|
x_high = x_low + 1
|
|
ly = y - y_low
|
|
lx = x - x_low
|
|
hy = 1 - ly
|
|
hx = 1 - lx
|
|
for ch in range(self.channels):
|
|
bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
|
|
x_low]
|
|
bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
|
|
x_high]
|
|
bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
|
|
x_low]
|
|
bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
|
|
x_high]
|
|
bilinear_w[ph, pw, c, 0] = hy * hx
|
|
bilinear_w[ph, pw, c, 1] = hy * lx
|
|
bilinear_w[ph, pw, c, 2] = ly * hx
|
|
bilinear_w[ph, pw, c, 3] = ly * lx
|
|
c = c + 1
|
|
return bilinear_pos, bilinear_w
|
|
|
|
def calc_roi_align(self):
|
|
self.out_data = np.zeros(
|
|
(self.rois_num, self.channels, self.pooled_height,
|
|
self.pooled_width)).astype('float32')
|
|
|
|
for i in range(self.rois_num):
|
|
roi = self.rois[i]
|
|
roi_batch_id = int(roi[0])
|
|
x_i = self.x[roi_batch_id]
|
|
roi_xmin = roi[1] * self.spatial_scale
|
|
roi_ymin = roi[2] * self.spatial_scale
|
|
roi_xmax = roi[3] * self.spatial_scale
|
|
roi_ymax = roi[4] * self.spatial_scale
|
|
roi_width = max(roi_xmax - roi_xmin, 1)
|
|
roi_height = max(roi_ymax - roi_ymin, 1)
|
|
bin_size_h = float(roi_height) / float(self.pooled_height)
|
|
bin_size_w = float(roi_width) / float(self.pooled_width)
|
|
roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
|
|
math.ceil(roi_height / self.pooled_height)
|
|
roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
|
|
math.ceil(roi_width / self.pooled_width)
|
|
count = int(roi_bin_grid_h * roi_bin_grid_w)
|
|
pre_size = count * self.pooled_width * self.pooled_height
|
|
bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
|
|
int(roi_bin_grid_h),
|
|
int(roi_bin_grid_w),
|
|
bin_size_h, bin_size_w)
|
|
for ch in range(self.channels):
|
|
align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
|
|
output_val = align_per_bin.mean(axis=-1)
|
|
self.out_data[i, ch, :, :] = output_val
|
|
|
|
def make_rois(self):
|
|
rois = []
|
|
self.rois_lod = [[]]
|
|
for bno in range(self.batch_size):
|
|
self.rois_lod[0].append(bno + 1)
|
|
for i in range(bno + 1):
|
|
x1 = np.random.random_integers(
|
|
0, self.width // self.spatial_scale - self.pooled_width)
|
|
y1 = np.random.random_integers(
|
|
0, self.height // self.spatial_scale - self.pooled_height)
|
|
|
|
x2 = np.random.random_integers(x1 + self.pooled_width,
|
|
self.width // self.spatial_scale)
|
|
y2 = np.random.random_integers(
|
|
y1 + self.pooled_height, self.height // self.spatial_scale)
|
|
|
|
roi = [bno, x1, y1, x2, y2]
|
|
rois.append(roi)
|
|
self.rois_num = len(rois)
|
|
self.rois = np.array(rois).astype("float32")
|
|
|
|
def setUp(self):
|
|
self.op_type = "roi_align"
|
|
self.set_data()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|