You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/regularizer.py

142 lines
4.6 KiB

import paddle.v2.fluid.framework as framework
__all__ = [
'append_regularization_ops', 'L2DecayRegularizer', 'L1DecayRegularizer'
]
def append_regularization_ops(parameters_and_grads):
"""Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc.
This will add gradients of the regularizer function to the gradients
of the parameters and return these modified gradients. This is the
same as implementing weight decay in optimizers for regularization.
Args:
parameters_and_grads: A list of (parameters, gradients) pairs
that need to be regularized.
Returns:
list of (parameters, gradients) pair with the regularized gradient
Raises:
Exception: Unknown regularization type
"""
params_and_grads = []
for param, grad in parameters_and_grads:
# If no gradient or no regularization specified,
# then we don't need to do anything
if grad is None or param.regularizer is None:
params_and_grads.append((param, grad))
continue
# Add variable for regularization term in grad block
regularization_term = param.regularizer(param, grad.block)
assert grad.shape == regularization_term.shape
grad.block.append_op(
type='elementwise_add',
inputs={"X": grad,
"Y": regularization_term},
outputs={"Out": grad})
params_and_grads.append((param, grad))
return params_and_grads
class WeightDecayRegularizer(object):
"""Base class for weight decay regularizers
Defines the common interface of weight-decay regularizers.
Weight-decay regularizers are added only during the backward
pass for faster regularization. They add operations to the network
that correspond to gradient of the regularization function.
Users should not use this class directly, but need to use one
of its implementations
"""
def __init__(self):
pass
def __call__(self, param, block):
"""Add corresponding weight decay operations to the network
"""
raise NotImplementedError()
class L2DecayRegularizer(WeightDecayRegularizer):
"""Implements the L2 Weight Decay Regularization
"""
def __init__(self, regularization_coeff=0.0):
assert regularization_coeff is not None
super(L2DecayRegularizer, self).__init__()
self._regularization_coeff = regularization_coeff
def __call__(self, param, block):
"""Add L2 weight decay ops to network
Adds L2 weight decay ops.
L2WeightDecay = reg_coeff * parameter
Args:
param: parameter variable for which regularization is applied
block: block in which variable is to be created
Returns:
new variable for weight decay
"""
assert isinstance(param, framework.Parameter)
assert isinstance(block, framework.Block)
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
# Append Op to calculate decay
block.append_op(
type='scale',
inputs={"X": param},
outputs={"Out": decay},
attrs={"scale": self._regularization_coeff})
return decay
class L1DecayRegularizer(WeightDecayRegularizer):
"""Implements the L1 Weight Decay Regularization
"""
def __init__(self, regularization_coeff=0.0):
assert regularization_coeff is not None
super(L1DecayRegularizer, self).__init__()
self._regularization_coeff = regularization_coeff
def __call__(self, param, block):
"""Add L1 weight decay ops to network
Adds L1 weight decay ops.
L1WeightDecay = reg_coeff * sign(parameter)
Args:
param: parameter variable for which regularization is applied
block: block in which variable is to be created
Returns:
new variable for weight decay
"""
assert isinstance(param, framework.Parameter)
assert isinstance(block, framework.Block)
decay = block.create_var(
dtype="float32", shape=param.shape, lod_level=param.lod_level)
# Append sign op
block.append_op(
type='sign', inputs={"X": param}, outputs={"Out": decay})
# Append scale op to the output of sign op
block.append_op(
type='scale',
inputs={"X": decay},
outputs={"Out": decay},
attrs={"scale": self._regularization_coeff})
return decay